• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Study on algebraic surfaces via fibration structure

Research Project

  • PDF
Project/Area Number 15K04825
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKagoshima University

Principal Investigator

Murakami Masaaki  鹿児島大学, 理工学域理学系, 准教授 (10378599)

Co-Investigator(Kenkyū-buntansha) 松村 慎一  東北大学, 理学研究科, 准教授 (90647041)
Project Period (FY) 2015-04-01 – 2020-03-31
Keywords一般型代数曲面
Outline of Final Research Achievements

The purpose of this study was developing some approach for the study of fibration structures, and its application to some problems on complex algebraic surfaces of general type. In addition to some partial results on the original purposes, we obtained as their application some results on minimal complex surfaces with the first Chern number 9, the Euler characteristic of the structure sheaf 5, and the first Chern class divisible by 3. These include a complete structure theorem for the surfaces of this class, the uniqueness of the underlying differentiable structure, the unirationality and the dimension of the moduli space, and some concrete descriptions on the behaviour of the canonical map.

Free Research Field

複素代数幾何学

Academic Significance and Societal Importance of the Research Achievements

上に述べた我々の曲面は幾何種数が 4 になるが,幾何種数 4 の一般型曲面は,標準写像の振る舞いの観点から,古くから注目されてきたクラスであり,現在ほとんど分かっていない第 1 Chern 数が 8 以上の場合に,モジュライ空間の連結成分をまるまる 1 つ見つけ,研究を押し進めることができた.代数曲線束構造の今後の研究についての手がかりの為のものであったが,2-標準写像の非双有理性の研究についての副産物的な小結果に繋がったほか,今野一宏氏による正規標準曲面の研究とも関連が判明した.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi