• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Locally homogeneous non-Kaehler manifolds and Transformation groups

Research Project

  • PDF
Project/Area Number 15K04852
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionJosai University

Principal Investigator

Kamishima Yoshinobu  城西大学, 理学部, 客員教授 (10125304)

Co-Investigator(Kenkyū-buntansha) 長谷川 敬三  新潟大学, 人文社会・教育科学系, 教授 (00208480)
Research Collaborator Alekseevsky Dmitri. A.  Institute for Information Transmission
Cortés Vicente  University of Hamburg, Department of Mathematics and Center for Mathematical Physics
Baues Oliver  University of Fribourg, Department of Mathematics
Project Period (FY) 2015-04-01 – 2018-03-31
KeywordsLcK structure / Vaisman structure / Kaehler structure / Homogeneous space / Sasaki homogeneous space / Seifert fibering / Unimodular Lie group / Holomorphic Isometry
Outline of Final Research Achievements

A locally conformal Kaehler structure (lcK structure) on a Hermitian manifold (M,g,J) is the fundamental 2-form Ωsatisfying dΩ =ΩΛθ for some closed 1-form θ. The Lee field A is determined by the formula g(X) = g(A,X). If A is holomorphic Killing, then M is said to be a Vaisman manifold. If a Lie group G admits a left invariant lcK structure, G is said to be an lcK group. We have determined homogeneous Vaisman manifolds. Moreover, we classied unimodular Vaisman lcK groups.

Free Research Field

Geometry and Topology

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi