• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Research on generalized cohomology of flag varieties and Schur functions and their variants

Research Project

  • PDF
Project/Area Number 15K04876
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionOkayama University

Principal Investigator

Nakagawa Masaki  岡山大学, 教育学研究科, 准教授 (50370036)

Co-Investigator(Kenkyū-buntansha) 成瀬 弘  山梨大学, 大学院総合研究部, 教授 (20172596)
Co-Investigator(Renkei-kenkyūsha) IKEDA Takeshi  岡山理科大学, 理学部, 教授 (40309539)
NAKADA Kento  岡山大学, 教育学研究科, 准教授 (70532555)
Project Period (FY) 2015-04-01 – 2018-03-31
Keywordsトポロジー / 旗多様体 / 一般コホモロジー / Schur関数 / Hall-Littlewood関数 / Gysin写像 / 複素コボルディズム / シューベルト・カルキュラス
Outline of Final Research Achievements

We studied a generalization of the Gysin formulas for the Hall-Littlewood polynomials due to Pragacz to the complex-oriented generalized cohomology theory. We introduced the universal Hall-Littlewood functions, and established the universal Gysin formulas for them. We also studied a generalization of the Darondeau-Pragacz formulas in the ordinary cohomology theory to the complex cobordism theory, and extended their formulas in the case of type A flag bundles. In the course of our study, we introduced the universal factorial Hall-Littlewood P- and Q-functions, and were able to obtain the generating functions for them as a by-product of our formulas.

Free Research Field

数学, 幾何学, トポロジー

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi