• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development around various type entropy as well as operator algebraic basic research on measurable dynamical system and topological dynamical system

Research Project

  • PDF
Project/Area Number 15K04910
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKanagawa University

Principal Investigator

Cho Muneo  神奈川大学, 理学部, 教授 (10091620)

Project Period (FY) 2015-04-01 – 2020-03-31
KeywordsEntropy / Hilbert space / Operator Theory / dynamical system / Banach space
Outline of Final Research Achievements

Conjugation is defined in a Hilbert space. That is, it is defined by the inner product. By this definition, we have many papers of conjugations. We defined the conjugation in a Banach space. By this, we studied characterization of the spectrum and the numerical range of an operator concerning with a conjugation. From now on, conjugation on a Banach space we will be studied.

Free Research Field

関数解析学

Academic Significance and Societal Importance of the Research Achievements

これまで conjugation はヒルベルト空間の時のみに定義されていたのであるが、これをより一般のバナッハ空間上に定義することができたので、今後これに関連した研究が進められると考える。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi