• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Study on operator valued free probability, random matrices and their applications

Research Project

  • PDF
Project/Area Number 15K04923
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionAichi University of Education

Principal Investigator

Sakuma Noriyoshi  愛知教育大学, 教育学部, 准教授 (70610187)

Research Collaborator Yoshida Hiroaki  
Collins Benoit  
Hasebe Takahiro  
Suzuki Ryoichi  
Ueda Yuki  
Project Period (FY) 2015-04-01 – 2019-03-31
Keywords自由確率論 / 無限分解可能分布 / ランダム行列
Outline of Final Research Achievements

In this research we proved the followings:
(1) We proved that the normal distribution is freely selfdecomposable. It means that free convolution semigroup of normal distributions are unimodal. It has some corollaries. In its proof, we found a necessary and sufficient condition for freely selfdecomposable distributions.
(2) We introduce non-commutative point of view to outlier problem. Based on moment methods, we proved that asymptotic cyclic monotone independence appear in our RMM. For some explicit models, we compute concrete limiting distributions.

Free Research Field

確率論

Academic Significance and Societal Importance of the Research Achievements

ランダム行列理論は統計学, 通信, 量子情報理論, 機械学習理論に応用がある. 自由確率論は計算が困難な巨大なランダム行列のスペクトル分布を見積もる手法であり, その深化は応用上極めて重要である. 本研究課題でも一例であげると, 統計学上重要なアウトライヤーの問題を扱っているこれはデータ解析に関連する話題であり, 我々の結果は具体的なモデルに対してアウトライヤーの位置を理論的に求める手法であり, それを統計学に応用すれば新しい検定手法などを構築でき, データ解析に応用できる可能性を秘めていると思われる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi