• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Stochastic Convex Optimization Algorithm for Image Processing and Transfer

Research Project

  • PDF
Project/Area Number 15K06078
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Communication/Network engineering
Research InstitutionChiba Institute of Technology

Principal Investigator

MIYATA Takamichi  千葉工業大学, 先進工学部, 教授 (90431999)

Project Period (FY) 2015-04-01 – 2019-03-31
Keywords画像処理 / 凸最適化 / 確率的最適化 / 信号処理
Outline of Final Research Achievements

We proposed new image restoration methods based on convex and non-convex optimization by using stochastic optimization approach. The main research topics are an image deblurring and restoration method from compressed sampling via stochastic convex optimization, a color image restoration method by weighted tensor nuclear norm minimization, a color image completion method by weighted tensor Schatten-p norm minimization, and a texture recovery method by statistics estimation for image denoising. We publish the results of these research topics at the corresponding international conferences.

Free Research Field

画像処理

Academic Significance and Societal Importance of the Research Achievements

画像からのノイズ除去やぼけの復元などを含む画像復元技術は,デジタルカメラやテレビなど社会のあらゆる場面で利用されている.近年,数理最適化を用いた画像復元手法が高い性能を持つことが明らかとなっているが,計算量が大きいことがそれらの手法を実際に利用する際の課題となっていた.本研究は,計算量の削減を目指して提案された確率的最適化手法を,数理最適化を用いた画像復元技術に応用することを検討し,当該課題の解決を試みるものである.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi