2018 Fiscal Year Final Research Report
Low-temperature sintering of alumina aiming for novel LTCC devices featuring high thermal conductivity and its application to non-shrinkage firing technology
Project/Area Number |
15K06514
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Material processing/Microstructural control engineering
|
Research Institution | Ube National College of Technology |
Principal Investigator |
Shigeno Koichi 宇部工業高等専門学校, 物質工学科, 准教授 (60707131)
|
Co-Investigator(Kenkyū-buntansha) |
吉田 政司 宇部工業高等専門学校, 機械工学科, 教授 (10370024)
徳永 仁夫 鹿児島工業高等専門学校, 機械工学科, 准教授 (70435460)
|
Research Collaborator |
Fujimori Hirotaka
Kan Akinori
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | アルミナ / セラミックス / 焼結助剤 / 低温焼結化 / LTCC(低温同時焼成セラミックス) / 高熱伝導 / 誘電体 |
Outline of Final Research Achievements |
Our previous studies have been intended to develop novel sintering additives that can allow alumina to be well sintered at a low temperature with a small quantity. We successfully invented low temperature co-fired alumina featuring high density and thermal conductivity at 900 °C. In this study, the dielectric properties of the materials were improved while maintaining the high thermal conductivity of 17 W/mK and the low temperature sintering below the melting point of silver by improving the additive composition and the firing atmosphere. In addition, in this system, it was found that a well sintered body can be almost obtained even below the liquid phase generation temperature (solid-state-activated-sintering). Furthermore, the powder synthesis by the freeze-drying method was examined, and a compact sintered body with a relative density of approximately 95 % was successfully obtained even by non-shrinkage firing in the x-y direction at the firing temperature of 950 °C.
|
Free Research Field |
材料工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究における社会的意義は、開発した低温同時焼成アルミナが小型化と高放熱性を両立できることにある。今まで個々に製造していたデバイスを1パッケージ内に収めることができるため、放熱性の必要な箇所において付加価値の高いデバイスとしての効果が見込まれる。また、本研究における学術的意義は、焼結メカニズム解明のためのアプローチにあり、他のセラミックスにも有効に活かされると考えられる。
|