2018 Fiscal Year Final Research Report
Electrical synapses between gap-junctionally connected visual cells increase neural spike generation to enhance glutaminergic excitatory synapses from the visual centers of the common marmoset.
Project/Area Number |
15K08193
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
General physiology
|
Research Institution | Fujita Health University |
Principal Investigator |
Hidaka Soh 藤田医科大学, 医学部, 講師 (00228735)
|
Co-Investigator(Kenkyū-buntansha) |
海野 修 東邦大学, 理学部, 教授 (70119907)
|
Research Collaborator |
Akahori Yasushi
Kaneko Chiyuki
Fujita Kimikazu
Nanbu Atsushi
Hatanaka Nobuhiko
Poznanski Ricard Roman
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 電気シナプス / ギャップ結合 / 閾値下電流 / 同期興奮 / 興奮性シナプス後電位 / シナプス伝達の効率化 / 大脳皮質視覚野 / 神経回路網の成熟 |
Outline of Final Research Achievements |
Electrical synapses through gap junctions occurred between excitatory neurons of cerebral cortex of developing animals. Electrical connections between these neurons are expected to control cells' excitation. In this study, we examined cells' excitation by electrical coupling between excitatory neurons. We found gap junctions involving connexin36 in the cerebral visual cortex of adult common marmoset, and between pyramidal cells in cerebral cortex of developing rats. Dual whole-cell patch clamp analysis of pairs of neighboring cells revealed the occurrence of prominent electrotonic transmission between pairs of cells with symmetrical gap junction conductance. Immature cortical pyramidal cells promote neural spiking by synchronous injection of subthrethold currents into pairs of electrically coupled cells. Electrical coupling via electrical synapses between gap-junctionally connected visual neurons appears to increase spike generation to enhance glutaminergic excitatory synaptic outputs.
|
Free Research Field |
神経生理学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果として、コモンマーモセットの大脳皮質視覚野の神経細胞間でギャップ結合を介した電気シナプスがあれば、電気シナプスを介したシナプス前的なCa2+スパイクの増大によって、出力の化学シナプスで情報伝達の改善が起こるというシナプス伝達効率化のメカニズムを解明できた。本研究の成果の学術的意義は、霊長類の脳の成長・発達過程における“経験や環境に依存した脳の神経回路の機能的な成熟機構”の比較生理学的な解明に発展する所にある。また本研究の成果の社会的意義として、“ヒトの脳の機能の発達や成熟の発達生理学的な解明”の研究分野に 波及し、本研究は 発展して行くと考えられる。
|