• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Prediction of tumor control and side effects using in-treatment dose distribution in stereotactic body radiotherapy

Research Project

  • PDF
Project/Area Number 15K08692
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Medical Physics and Radiological Technology
Research InstitutionThe University of Tokyo

Principal Investigator

Imae Toshikazu  東京大学, 医学部附属病院, 主任診療放射線技師 (80420222)

Co-Investigator(Kenkyū-buntansha) 山下 英臣  東京大学, 医学部附属病院, 講師 (70447407)
芳賀 昭弘  徳島大学, 大学院医歯薬学研究部(医学系), 教授 (30448021)
辰己 大作  医療法人新明会都島放射線科クリニック(放射線治療研究開発部), 放射線治療研究開発部, 医学物理士 (60728848)
Research Collaborator WATANABE Yuichi  東京大学, 医学部附属病院, 診療放射線技師 (30772876)
Project Period (FY) 2015-04-01 – 2018-03-31
Keywords体幹部定位放射線治療 / 強度変調回転照射法 / 対象内構造 / 実線量分布 / 腫瘍制御 / 副作用 / 予測法 / 治療中
Outline of Final Research Achievements

Stereotactic body radiotherapy (SBRT) with volumetric modulated arc therapy (VMAT) is an effective strategy to treat lung or prostate cancer. VMAT is a rotational intensity modulated radiotherapy technique capable of acquiring projection images during delivery. The purpose of this study was to reconstruct in-treatment dose distribution for SBRT by use of cone-beam CT (CBCT) and a log file during VMAT delivery and predict tumor control and side effects using in-treatment dose distribution. We evaluated in vivo dosimetry for prostate cancer using commercial software, developed a new method to reconstruct in-treatment dose distribution from in-treatment CBCT and a log file acquired during VMAT-SBRT and evaluated the safety and availability of VMAT-SBRT using flattening-filter-free (FFF) technique in treatment of lung cancer. VMAT-SBRT using FFF technique shortened the treatment time for lung SBRT while maintaining a high local control rate with low toxicity.

Free Research Field

医学物理学・放射線技術学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi