• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Higher order hyper uniform point sets and higher order quasi-Monte Carlo method

Research Project

  • PDF
Project/Area Number 15K13460
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionHiroshima University

Principal Investigator

Matsumoto Makoto  広島大学, 理学研究科, 教授 (70231602)

Co-Investigator(Renkei-kenkyūsha) HAGITA Mariko  お茶の水女子大学, 大学院人間文化創成科学研究科, 教授 (70338218)
NISHIMURA Takuji  山形大学, 理学部, 准教授 (90333947)
HARAMOTO Hiroshi  愛媛大学, 教育学部, 講師 (40511324)
HARASE Shin  立命館大学, 理工学部, 数学嘱託講師 (80610576)
Project Period (FY) 2015-04-01 – 2018-03-31
Keywords準モンテカルロ法 / 数値積分 / WAFOM / 擬似乱数
Outline of Final Research Achievements

Let f be an integrand function defined on an s-dimensional hyper cube. Quasi-Monte Carlo method is to choose a point set P of size N in this hyper cube, and obtain numerical approximation of the integral of f by the mean value of f over P. When P is chosen uniformly randomly, the integration error is known to converge with order N's power to -1/2. Classical Quasi-Monte Carlo tries to design a good P with order nearly 1/N. Our research focuses on an index called parameterized Walsh Figure of Merit. By searching for P with small value of this index, we find P with smaller error than previously proposed point sets. In particular, for low dimensions s<5, our method shows remarkable improvements.

Free Research Field

代数学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi