• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Development of fast algorithms for semi-infinite programs with conic constraints and application to practical problems

Research Project

  • PDF
Project/Area Number 15K15943
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical informatics
Research InstitutionInstitute of Physical and Chemical Research (2017-2018)
Tokyo University of Science (2015-2016)

Principal Investigator

Okuno Takayuki  国立研究開発法人理化学研究所, 革新知能統合研究センター, 研究員 (70711969)

Research Collaborator Fukushima Masao  
Hayashi Shunsuke  
Yamashita Nobuo  
Tanaka Mirai  
Project Period (FY) 2015-04-01 – 2019-03-31
Keywords半無限最適化 / 錐最適化 / 非凸最適化 / アルゴリズム / 交換法 / 主双対パス追跡法 / 半正定値錐, 2次錐 / DC最適化
Outline of Final Research Achievements

In this research project, we studied optimization problems which can be expressed as the problem of minimizing a given real-valued function subject to inequality and equality constraints. Particularly, we focus on a semi-infinite conic program (SICP) which is a special class of optimization problems having infinitely many inequality constraints (semi-infinite constraints) together with conic constraints.
Our main contribution was to propose several algorithms for finding KKT points of SICPs or closely related optimization problems, where a KKT point is a solution satisfying certain technical conditions related to the problems under consideration. We analyzed conditions under which the proposed algorithms output KKT points. Moreover, we actually implemented the proposed algorithms and showed their efficiency via several numerical experiments.

Free Research Field

連続最適化, 数理工学

Academic Significance and Societal Importance of the Research Achievements

半無限錐計画問題は, 有限次元インパルス応答フィルター設計などの工学上多くの重要な諸問題から自然なモデル化を通して出現することが多い. したがって半無限錐計画問題を効率的に解く方法論を立脚し、その解を与えることは, そうした諸問題を効率的な解決, もしくはその糸口を与えることになりうる.
これまで錐制約や半無限制約を別々にもった最適化問題の研究は深く行われてきた. 一方, その両方を兼ね揃えた半無限錐計画問題を解くアルゴリズムの設計のためには二つの構造の特徴をうまく活かすことが重要であるものの, そうした研究は少ない. その意味で本研究成果で得られた手法とその理論は意義があると考えられる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi