• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Research-status Report

スパース学習に基づく情報統合型多変量統計手法の研究

Research Project

Project/Area Number 15K15947
Research InstitutionThe University of Electro-Communications

Principal Investigator

川野 秀一  電気通信大学, その他の研究科, 准教授 (50611448)

Project Period (FY) 2015-04-01 – 2018-03-31
Keywords機械学習 / スパース学習 / 主成分分析 / 回帰分析 / オンライン学習 / ベイジアンアプローチ / 情報量規準 / 順序カテゴリカルデータ
Outline of Annual Research Achievements

本年度においては,まず,連続変数および離散変数を扱うことが可能なスパース主成分回帰モデルの研究に取り組んだ.連続変数に対しては,2乗損失関数と主成分損失関数に基づきモデルを構成し,その損失関数にスパース正則化を課すことにより,変数選択ならびにパラメータの一意性を保証したモデリング手法を提案した.数値シミュレーションや実データへの適用を通してその有用性を検証した.次に,離散変数に対しては,多項ロジスティックモデルに着目し,そのモデルから自然に導入される尤度ベースの損失関数と主成分損失関数およびスパース正則化項を用いることにより,離散変数に対する主成分回帰モデリング手法を提案した.実データへの適用を通して,提案手法の有効性を検証した.これらの研究成果は,研究論文として発表するとともに,国内外の学会や国際会議で発表した.また,様々な損失関数に対するスパースモデリングに関する研究,ならびにベイジアンアプローチによるスパース推定の研究についても取り組んだ.順序付きカテゴリカルデータを扱うことが可能な連続比ロジットモデルに着目し,平行性仮定と説明変数の自動選択を目的として,スパース推定に基づく順序ロジットモデリング手法を提案した.オンライン学習アルゴリズムの一つであるadaptive regularization of weight vectors (AROW)に着目し,特徴選択を有したスパースAROWを提案した.ベイジアンlassoに含まれるハイパーパラメータの値を客観的に選択するために,ベイズ型予測分布に基づいた情報量規準を提案するとともに,効率的にパラメータを選択するための最適化アルゴリズムも提案した.得られた成果は学会・シンポジウム等で発表し,研究論文としてまとめて学術雑誌に発表した.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

当初計画していたスパース主成分回帰モデリングに関する研究のみならず,様々な損失関数に対するスパースモデリングおよびベイジアンスパースモデリングに関する研究についても取り組むことができた.ただ、成果の多くはまだ研究論文として出版されていないため,区分は「おおむね順調に進展している」とした.

Strategy for Future Research Activity

スパース主成分回帰モデルが扱うことが可能な離散変数としては,現段階では多項ロジスティックモデルにより記述されるもののみであるため,この手法をカウントデータや生存時間データを扱うことが可能なモデルまで拡張する.さらに,これまで提案してきた手法とともに統一的に扱うために,一般化線形モデルの枠組みまで拡張する.加えて,データ形式が関数,行列,テンソルに対する情報統合型モデルの損失関数についての研究に着手する.また,オンラインスパースモデリングやベイジアンスパースモデリングについても引き続き研究を進め,情報統合型モデル構築のための足場を固める.

  • Research Products

    (15 results)

All 2016 2015 Other

All Journal Article (7 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 1 results) Presentation (7 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Remarks (1 results)

  • [Journal Article] モデル平均化法による Bayesian lasso 回帰モデリング2016

    • Author(s)
      嶋村海人,川野秀一,小西貞則
    • Journal Title

      応用統計学

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed
  • [Journal Article] Sparse principal component regression with adaptive loading2015

    • Author(s)
      S. Kawano, H. Fujisawa, T. Takada, T. Shiroishi
    • Journal Title

      Computational Statistics and Data Analysis

      Volume: 89 Pages: 192-203

    • DOI

      10.1016/j.csda.2015.03.016

    • Peer Reviewed
  • [Journal Article] Predictive model selection criteria for Bayesian lasso regression2015

    • Author(s)
      S. Kawano, I. Hoshina, K. Shimamura, S. Konishi
    • Journal Title

      Journal of the Japanese Society of Computational Statistics

      Volume: 28 Pages: 67-82

    • DOI

      10.5183/jjscs.1501001_220

    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] 1段階法による主成分回帰モデリング2015

    • Author(s)
      川野秀一,藤澤洋徳,高田豊行,城石俊彦
    • Journal Title

      日本計算機統計学会第29回大会講演報告集

      Volume: なし Pages: 73-76

  • [Journal Article] Fused Lassoに基づくスパース順序ロジットモデリング2015

    • Author(s)
      加藤駿典,川野秀一
    • Journal Title

      2015年度統計関連学会連合大会講演報告集

      Volume: なし Pages: 188

  • [Journal Article] 適応正則化オンライン学習における特徴選択問題2015

    • Author(s)
      野崎俊貴,川野秀一
    • Journal Title

      2015年度統計関連学会連合大会講演報告集

      Volume: なし Pages: 92

  • [Journal Article] スパース推定と統計解析2015

    • Author(s)
      川野秀一
    • Journal Title

      2015年度統計関連学会連合大会講演報告集

      Volume: なし Pages: 84-147

  • [Presentation] 超高次元スパース回帰法によるゲノムデータ解析2016

    • Author(s)
      植木優夫,嶋村海人,川野秀一,小西貞則,田宮元
    • Organizer
      シンポジウム「生命データ科学による新たな社会的価値の創造~医療,農業,環境分野における役割と作物設計への応用~」
    • Place of Presentation
      理化学研究所横浜キャンパス(神奈川県・横浜市)
    • Year and Date
      2016-02-22 – 2016-02-23
  • [Presentation] スパース主成分ロジスティック回帰に基づくマウスコンソミック系統の解析2016

    • Author(s)
      川野秀一
    • Organizer
      研究集会「遺伝学と統計学における数理とモデリング」
    • Place of Presentation
      政策研究大学院大学(東京都・港区)
    • Year and Date
      2016-01-25 – 2016-01-25
  • [Presentation] One-stage estimation of principal component regression with sparse regularization2015

    • Author(s)
      S. Kawano, H. Fujisawa, T. Takada, T. Shiroishi
    • Organizer
      The 8th International Conference of the ERCIM WG on Computational and Methodological Statistics
    • Place of Presentation
      ロンドン(イギリス)
    • Year and Date
      2015-12-12 – 2015-12-14
    • Int'l Joint Research
  • [Presentation] Fused Lassoに基づくスパース順序ロジットモデリング2015

    • Author(s)
      加藤駿典,川野秀一
    • Organizer
      2015年度統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県・岡山市)
    • Year and Date
      2015-09-06 – 2015-09-09
  • [Presentation] 適応正則化オンライン学習における特徴選択問題2015

    • Author(s)
      野崎俊貴,川野秀一
    • Organizer
      2015年度統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県・岡山市)
    • Year and Date
      2015-09-06 – 2015-09-09
  • [Presentation] スパース推定と統計解析2015

    • Author(s)
      川野秀一
    • Organizer
      2015年度統計関連学会連合大会
    • Place of Presentation
      岡山大学(岡山県・岡山市)
    • Year and Date
      2015-09-06 – 2015-09-09
    • Invited
  • [Presentation] 1段階法による主成分回帰モデリング2015

    • Author(s)
      川野秀一,藤澤洋徳,高田豊行,城石俊彦
    • Organizer
      日本計算機統計学会第29回大会
    • Place of Presentation
      山梨県立図書館(山梨県・甲府市)
    • Year and Date
      2015-05-14 – 2015-05-15
  • [Remarks] 研究者情報総覧

    • URL

      http://kjk.office.uec.ac.jp/Profiles/68/0006701/profile.html

URL: 

Published: 2017-01-06  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi