2015 Fiscal Year Research-status Report
動的最適化問題での近似最適経路の導出と経済学への応用
Project/Area Number |
15K17026
|
Research Institution | Keio University |
Principal Investigator |
八尾 政行 慶應義塾大学, 経済学部, 助教 (10733636)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 動的計画法 / 不動点定理 |
Outline of Annual Research Achievements |
個人、企業、政府など経済学が扱う主体は、日々、様々な意思決定を行っている。その中で、主体は、それぞれ与えられた条件・制約のもと考えられうる候補から、何らかの価値基準を満足させる選択を行うという、最適化問題に直面しているといえる。一方で、経済成長、景気変動、インフレーション、デフレーションなど分析対象となる経済現象は時間の経過による変化が起こるため、その最適化問題も時間の概念を含んだもの、すなわち、動的最適化問題が分析されている。 動的計画法は、動的最適化問題を分析するための、重要な分析手法のひとつである。ただ、それらの先行研究には、いくつかの理論的な問題が知られている。本研究はその問題解決を目標とする動的計画法に関する基礎・応用研究を行う。 今年度は本研究課題に関連して以下の研究を行った。論文“An Application of Kleene's Fixed Point Theorem to Dynamic Programming”(神戸大学・上東貴志氏、アリゾナ州立大学Kevin L. Reffett氏との共著)がInternatinal Journal of Economic Theory誌へ掲載された。また、論文“Infinite-Horizon Deterministic Dynamic Programming in Discrete Time: A Monotone Convergence Principle and a Penalty Method”(神戸大学・上東貴志氏との共著)および、論文“Recursive Utility and the Solution to the Bellman Equation”を完成させディスカッション・ペーパーとして公開している。これら以外にもいくつかの関連研究を行った。これらは次年度以降論文の作成、研究発表を継続的に行う。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
初年度は当該研究分野に関する基礎的な知見を深めると同時に、<1> 問題の構造を分析し、<2> 理論的な定式化を目標としていた。 研究実績の概要の項で述べたように、いくつかの論文を完成させ、進捗中の論文もある。これは、<1>の問題の構造を分析する中で、文献の調査や他の研究者との交流を行い、動的計画法に関する研究課題を発見できたためである。 <1> 問題の構造を分析した結果、<2> 理論的な定式化の方向性も定まりつつある。具体的には、Variational Analysisという数学の一分野で使われているepsilon-argmaxという概念が本研究課題にある近似最適経路を分析するために重要な要素になりうるという予測を立てることができた。完全な<2> 理論的な定式化を行うために、当該分野の関連する結果を調査している。 上述したいくつかの論文を作成できた点、初年度の目標である<1>、<2>をおおむね達成できているという点で、本研究はおおむね順調に進展していると考えている。
|
Strategy for Future Research Activity |
初年度はおおむね研究計画通りに研究を進めることができた。次年度以降も研究計画に則って研究を進行していく予定である。具体的には、<3> 理論分析、<4> 応用研究を目標としている。まずは、<3> 理論分析の要となる近似最適経路に関する分析を中心に行う。 また、初年度作成した論文を学術雑誌へ投稿し、場合によってはレフリーから要請される改訂作業を行う。また、現在進行中の論文に関しても完成を目指す。研究発表等を通じてより完成度の高い論文が作成できるよう改善していく。
|
Research Products
(5 results)