• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Research on free probability and its applications to probability, combinatorics and representation theories

Research Project

  • PDF
Project/Area Number 15K17549
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionHokkaido University

Principal Investigator

Hasebe Takahiro  北海道大学, 理学研究院, 准教授 (00633166)

Research Collaborator Yoshinaga Masahiko  
Miyatani Toshinori  
Tsujie Shuhei  
Ueda Yuki  
Asai Nobuhiro  
Sakuma Noriyoshi  
Collins Benoit  
Lehner Franz  
Franz Uwe  
Schleissinger Sebastian  
Arizmendi Octavio  
Huang Hao-Wei  
Wang Jiun-Chau  
Szpojankowski Kamil  
Bozejko Marek  
Ejsmont Wiktor  
Simon Thomas  
Wang Min  
Thorbjornsen Steen  
Skoufranis Paul  
Gu Yinzheng  
Project Period (FY) 2015-04-01 – 2019-03-31
Keywordsfree probability / infinite divisibility / Levy processes / unimodal distributions / combinatorics / cumulants / Markov processes / stable distributions
Outline of Final Research Achievements

Free probability is a field strongly motivated by mathematics of quantum physics (functional analysis and operator algebras). It focuses on "non-commutative random variables". This theory is constructed in analogy with probability theory, and there are surprising correspondences with probability theory. This research project has investigated various aspects of free probability, including limit theorems in comparison with probability theory, unified theory of cumulants, and applications to asymptotic representation theory of symmetric groups. In addition to finding analogy with probability theory, this project created some feedback to probability theory by finding a new aspect of Markov processes and probability distributions.

Free Research Field

確率論,関数解析学

Academic Significance and Societal Importance of the Research Achievements

近年の数学においては様々な分野の相互関係が見つかっている.本研究でも分野横断的な側面が強く,確率論,関数解析,組合せ論,複素関数論などの分野を活用して研究が進み,逆にこういった分野への新たな視点を提供することもできた.特にランダム行列やマルコフ過程などのように応用範囲の広い分野に対しても新たな視点が得られた.これによって学術的な交流が活発になり,かつ将来的に成果が社会に還元されるためのポテンシャルとなった.また後継者に研究を伝えていくことで,将来を担う世代の教育にも貢献できる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi