• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Research-status Report

位相的ラドン変換の超局所解析と特異点理論への応用

Research Project

Project/Area Number 15K17564
Research InstitutionKindai University

Principal Investigator

松井 優  近畿大学, 理工学部, 准教授 (10510026)

Project Period (FY) 2015-04-01 – 2019-03-31
Keywordsラドン変換 / 構成可能関数 / 定義可能関数
Outline of Annual Research Achievements

本研究では,集合のオイラー数をその有限加法的測度とする積分論における構成可能関数や定義可能関数といった代数的な背景を持つ関数の積分変換について研究している.平成28年度は主にグラスマン多様体における定義可能関数の位相的ラドン変換とアフィングラスマン多様体における構成可能関数の位相的ラドン変換について,反転公式や単射定理を中心に研究を行った.
これまで通常のグラスマン多様体における構成可能関数の位相的ラドン変換については,反転公式や像の特徴づけが得られていた.平成28年度はまずそれらの結果を精密化し,ラドン変換の単射定理を証明した.また,定義可能関数の位相的ラドン変換について,これまで一般的な設定の強い仮定の下で得られていた結果を,グラスマン多様体に限定することで弱めた仮定で反転公式が構成できることが分かった.この課題は現時点では完全に解明できていない点もあり,今後も研究を継続していく計画である.次にコンパクトでないアフィングラスマン多様体における大域的構成可能関数に対する位相的ラドン変換について研究を行った.反転公式を得られる十分条件はコンパクトなグラスマン多様体の場合とほとんど平行に議論でき,類似の結果が得られることが分かった.単射定理については,コンパクトなグラスマン多様体のときとは一部異なる結果が得られている.これはまだ完全に解明できていない点もあり,今後も研究を継続していく計画である.また,位相的ラドン変換のさまざまな応用に向けて具体例の考察を行うなど,予備的な研究も行っている.これらについては,今後も情報収集や準備を行うとともに,新たな現象の発見や一般的性質の証明を行う計画である.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

定義可能関数の位相的積分変換理論は技術的困難を多く含んでいて扱いが難しく,その積分変換の研究は当初の計画通りではないもののある程度進んでいる.当初の計画とは異なるが,これまでの研究から派生した問題に取り組み,結果を得ている.これらについては,新たな課題も見つかっているので,今後も引き続き研究を行っていく.位相的ラドン変換のさまざまな応用に向けた予備的な研究についても,引き続き行う必要はあるものの,順調に情報収集や準備が進んでいる.

Strategy for Future Research Activity

平成29年度は,平成27年度,28年度に得られた結果や知見をさらに発展させる計画である.まずは,現在研究中のアフィングラスマン多様体の構成可能関数の位相的ラドン変換の像の特徴づけと単射定理について改良を行う.これらがうまくいけば,その超局所解析的な挙動についても考察を行う計画である.グラスマン多様体の定義可能関数の位相的ラドン変換についてもまずは反転公式を得るより良い十分条件の改良に努める.また,応用に向けた予備的な具体例の考察には,計算機および計算ソフトウェアをうまく活用し効率よく研究を行っていく.一般的な状況で結果が得られない場合には,ここで得られた具体的な状況について詳しく調べていく計画である.また,研究を円滑に進めるために,特異点理論,超局所解析,積分幾何をテーマとした国内外の研究集会,セミナーに参加し研究者とディスカッションを行ったり,国内外の研究者を招聘し研究講演会,セミナー,ディスカッションを行うなどして知見を広げるとともに問題の解決にあたる.

Causes of Carryover

次年度使用額が生じた主な理由は,物品費が未使用であったためである.これは,現在使用している計算機および計算ソフトウェアが今年度も十分に機能し使用できたので,計画当初に予定していた計算機等の新規購入やヴァージョンアップの必要性がなかったためである.

Expenditure Plan for Carryover Budget

本研究では計算機や計算ソフトウェアを活用して具体例を計算し新しい現象の発見に努めており,効率よく研究を行っていくために必要に応じて新規に計算機および計算ソフトウェアを購入やヴァージョンアップのために研究費を使用する.特異点理論,超局所解析,積分幾何をテーマとする国内外の研究集会,セミナーに参加し国内外の研究者と議論を行うための旅費として研究費を使用する.国内外の研究者を招聘し研究講演会,セミナーを行ったり,専門知識の提供を受けるための謝金を含む費用としても研究費を活用していく.

  • Research Products

    (4 results)

All 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Journal Article] Monodromy at infinity of polynomial maps and A-hypergeometric functions2016

    • Author(s)
      Kiyoshi TAKEUCHI and Yutaka MATSUI
    • Journal Title

      Sugaku

      Volume: 29 Pages: 67--99

    • Peer Reviewed
  • [Presentation] Euler obstructionの応用について2016

    • Author(s)
      Yutaka MATSUI
    • Organizer
      若者のための現代幾何入門
    • Place of Presentation
      立教大学
    • Year and Date
      2016-12-10
    • Invited
  • [Presentation] Topological Radon transforms and their applications2016

    • Author(s)
      Yutaka MATSUI
    • Organizer
      New development of microlocal analysis and singular perturbation theory
    • Place of Presentation
      京都大学
    • Year and Date
      2016-10-04
    • Int'l Joint Research / Invited
  • [Presentation] Euler obstructions and related topics I, II2016

    • Author(s)
      Yutaka MATSUI
    • Organizer
      Research on global properties of singularities
    • Place of Presentation
      兵庫教育大学
    • Year and Date
      2016-06-23
    • Invited

URL: 

Published: 2018-01-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi