• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Research-status Report

ケラー・シーゲル・ナヴィエ・ストークス系の数学解析

Research Project

Project/Area Number 15K17578
Research InstitutionChiba University

Principal Investigator

石田 祥子  千葉大学, 大学院理学研究院, 特任助教 (60712057)

Project Period (FY) 2015-04-01 – 2022-03-31
Keywords解の安定性
Outline of Annual Research Achievements

[具体的内容]生物の「走化性」とは化学物質の濃度勾配に沿って生物が特定の方向に移動する性質であり, 細胞生物学や臨床病理学において重要な役割を果たしている. ケラー・シーゲル系は, この走化性を記述する数理モデルである. 2007年には流体の運動を記述するナヴィエ・ストークス方程式との系が提唱され, 現在においても活発に研究が進んでいる. 本年度はこれらの系を包括する「質量保存則をもつ放物型方程式(parabolic equations with divergence form)」に対する解の安定性について, 昨年度に引き続き研究を進めた. 具体的には昨年度得られた結果に対する仮定をより分かりやすいものに改定した. 本研究成果は, 横田智巳氏 (東京理科大学)との共同研究として論文にまとめている. 同研究成果は第713回 応用解析研究会 (2020年7月, 早稲田大学), 国際研究集会「The Mini International Workshop on Mathematical Analysis of Chemotaxis」(2021年3月, オンライン開催)において招待発表された. また, 日本数学会2020年度秋季総合分科会 (オンライン開催)でも報告している.国際研究集会での講演により, 解の収束のクラスに関して助言を得ることが出来たので今後考察していく予定である.
[重要性]仮定をより分かりやすくしたことで本成果を適用できるか否かを簡単に判別できるようになった.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

令和2年度はケラー・シーゲル系の解の爆発について研究を進める予定であったが、成果をあげられなかった. しかし, これまでの計算結果や解の安定性の結果と合わせて, 第二未知関数の勾配ベクトルが解の大域存在・解の安定性そして解の爆発のすべてにおいて重要な指数となっていることが得られた.

Strategy for Future Research Activity

昨年度に続き, ケラー・シーゲル系に対して以下の研究を進めていく.
1.【時間無限大での極限への収束スピード】令和元年の研究では, 質量保存則をもつ一般の放物型方程式に対する解が定常解へ収束することが分かった.収束スピードはこれまでの様々な研究成果から指数減衰であると予想される.
2.【特異拡散項をもつ系の数学解析】拡散項が多孔質媒質方程式と同じで冪数が0以上1未満(Δu^m, 0<m<1)の場合には, X.Xu(2020)により新しい論文が発表されたが, 解の有界性までは得られていないのでアプローチしていきたい.

Causes of Carryover

国際研究集会「International Workshop on Mathematical Analysis of Chemotaxis」に於いて国外研究者を招聘する予定であったが, オンライン開催となったために旅費の支出を抑えることが出来た. 令和3年年度にも上記研究集会を開催予定であるので, 旅費 (招聘)として全額使用予定である.

  • Research Products

    (4 results)

All 2021 2020 Other

All Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results) Remarks (1 results)

  • [Presentation] Large time behavior for weak solutions of parabolic equations in divergence form2021

    • Author(s)
      Sachiko Ishida
    • Organizer
      The Mini International Workshop on Mathematical Analysis of Chemotaxis
    • Int'l Joint Research / Invited
  • [Presentation] L^1 -保存則をもつ放物型方程式に対する弱解の安定化2020

    • Author(s)
      石田祥子
    • Organizer
      日本数学会 2020年度秋季総合分科会
  • [Presentation] Weak stabilization of solutions for parabolic equations in divergence form2020

    • Author(s)
      石田祥子
    • Organizer
      第 713 回応用解析研究会
    • Invited
  • [Remarks]

    • URL

      https://sites.google.com/view/s-ishida/%E3%83%9B%E3%83%BC%E3%83%A0

URL: 

Published: 2021-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi