• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

On combinatiral problems using P_kappa lambda structures

Research Project

  • PDF
Project/Area Number 15K17587
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionWaseda University (2016-2017)
Kobe University (2015)

Principal Investigator

Usuba Toshimichi  早稲田大学, 理工学術院, 准教授 (10513632)

Research Collaborator Bagaria Joan  Universitat de Barcelona, ICREA and Departament de Lògica,Històriai Filosofia de Ciència, professor
Hamkins Joel David  The City University of New York, The Graduate Center, professor
Tsaprounis Konstantinos  University of the Aegean, Department of Mathematics, posdoc fellow
MATSUBARA Yo  名古屋大学, 大学院情報学研究科, 教授
SAKAI Hiroshi  神戸大学, 大学院システム情報学研究科, 准教授
ISHII Hiromi  筑波大学, 大学院数理物質科学研究科, 大学院生
YAMAURA Naoki  筑波大学, 大学院数理物質科学研究科, 大学院生
Project Period (FY) 2015-04-01 – 2018-03-31
Keywords巨大基数 / 反映原理 / 集合論的多元宇宙論 / 無限組み合わせ論 / 集合論的地質学
Outline of Final Research Achievements

On infinitely combinatorics, we obtained various results such as: applications of the unbranching principle to the ideal theory, comparison between cardinals and P_kappa lambda via combinatorial properties, applications of large cardinals to Lindeloef spaces. For the reflection principle, we separated the strong reflection principle from the weak one, and got the characterization of paracompact spaces.
In addition, for the set-theoretic multiverse and the set-theoretic geology, we showed the fundamental theorem that the downward directedness of all ground models. Furthermore, we proved that there exists the minimum ground model if there exists a large cardinal.

Free Research Field

公理的集合論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi