2018 Fiscal Year Final Research Report
Construction of Unified Mathematical Model for Plane Cell Polarity
Project/Area Number |
15K20835
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Foundations of mathematics/Applied mathematics
Morphology/Structure
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Research Collaborator |
YAMAZAKI Masakazu 秋田大学
AYUKAWA Tomonori 秋田大学
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 現象の数理モデル / 平面内細胞極性 / 数学解析 |
Outline of Final Research Achievements |
In the development of organisms, sheet-like cells with a planar structure often deforms and creates tissues and organs. At this time, cells are properly aligned according to the rules (described later), and appropriate tissues and organs are created. That is, the rule is that each cell localizes a certain group of proteins asymmetrically and cooperates with surrounding cells. Such a phenomenon is called Planar Cell Polarity (PCP). Through this study, we were able to investigate the stability of patterns etc. by mathematically analyzing certain mathematical models of PCP.
|
Free Research Field |
応用数学
|
Academic Significance and Societal Importance of the Research Achievements |
PCPは1950年頃から,分子生物学的手法が発展することによってその分子メカニズムの研究が盛んに行われてきた.一方,そのようなミクロな分子がどのように協調して,全体としての極性を揃えているかという点に関しては未解明な点が残されていた.ブレークスルーとなったのは, K. Amonlirdviman氏等によるPCPに関する数理モデル(Science,2005)である.このモデルの詳細な解析および自身の構成した数理モデルとの比較および整合性等を数理的に解析した.
|