• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Modeling of writing style features of authors extracted from class report documents and implementation in plagiarism detection system

Research Project

  • PDF
Project/Area Number 15K21514
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Learning support system
Educational technology
Research InstitutionOsaka Sangyo University

Principal Investigator

Ohno Asako  大阪産業大学, 工学部, 講師 (90550369)

Project Period (FY) 2015-04-01 – 2020-03-31
Keywords記述スタイル特徴 / 作成者認証 / レポート盗用発見 / 記述スタイルモデル / 教授学習支援システム / 知的学習支援システム / 特徴抽出 / 類似性検出
Outline of Final Research Achievements

I proposed a new plagiarism detection method for Japanese document based on the unique viewpoint of representing an author's writing style and performing author identification and implemented the method in the plagiarism detection system for Japanese academic reports.
The method measures similarity between the same author's previous writing style and the present one. For example, if the writing style extracted from student A's report document is different from his/her previous ones, we assume that there is a possibility of plagiarism.
I confirmed high performance for plagiarism detection from the result of evaluation experiment, though it need more improvement to be used in practice. Parameters of the trained writing models provided a variety of information that can be used to differentiate authors' writing style. The method also has a potential of achieve less burdensome plagiarism detection according to the results of questionnaire investigations.

Free Research Field

知的学習システム

Academic Significance and Societal Importance of the Research Achievements

本研究では「授業課題レポート文書」の性質や,「授業における盗用発見」という目的に特化し,人の行う「レポート文書の作成者の推定」に倣った,独自の類似性検出手法を提案している.「同一作成者のこれまでの書き方」をもとに,対象文書の作成者認証を行うというこれまでにないアプローチは,誤判定リスクの軽減にも貢献し,盗用発見に関わる教員・学生の精神的な負担軽減にもつながることが期待される.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi