2018 Fiscal Year Final Research Report
Development of smartphone application to predict the falling of elderly people.
Project/Area Number |
15K21545
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Community health nursing
Hygiene and public health
|
Research Institution | Kibi International University |
Principal Investigator |
Inoue Yu 吉備国際大学, 保健福祉研究所, 準研究員 (90726697)
|
Research Collaborator |
Harada Kazuhiro
Kurachi Yosuke
Yoneda Masahiro
Yamasaki Ryo
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 転倒発生予測 / 加速度 / アプリケーション開発 / 一般高齢者 |
Outline of Final Research Achievements |
The purpose of this study was to develop a basic application that can easily predict the risk in order to prevent falls, which is the main cause leading to the state of need of health care. In this study, we conducted a longitudinal study of 55 elderly people in the community. The results in the present study suggested that the power spectrum entropy (PSEn), Dynamic load factor (DLF) and Power spectrum ratio (PR) obtained from the fast Fourier transform of trunk acceleration can distinguish with high accuracy the presence or absence of falling experience. Especially, PSEn was useful to predict the falling of elderly people in the community. Furthermore, it was also suggested that those indices can detect the changes in motor function caused by participation in preventive care classes.
|
Free Research Field |
リハビリテーション医学
|
Academic Significance and Societal Importance of the Research Achievements |
地域在住高齢者を対象とした検討から,スマートフォンに搭載されたセンサーデバイスでも援用可能な解析アルゴリズムとして,PSEnは転倒発生の予測に有用であることが示唆された.また地域で開催される介護予防教室参加者の運動機能変化も評価可能な指標になり得ることが示唆された.またDLF,PRも一般高齢者や神経疾患により歩行障害を呈した例の歩行状態を把握する方法の一助となることが示唆された. 以上の知見は,地域で生活している高齢者が参加する介護予防教室に留まらず,地域包括ケアに関わる専門職にも有益な情報を提供すると共に,リハビリテーションの分野でも歩行障害の程度を定量化できる可能性を示唆するものである.
|