• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Speed and Fusion of Evolutionary Computation and Reinforcement Learning by Importance Sampling

Research Project

Project/Area Number 16300040
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionTokyo Institute of Technology

Principal Investigator

KOBAYASHI Shigenobu  Interdisciplinary School of Science and Engineering, Professor, 大学院総合理工学研究科, 教授 (40016697)

Co-Investigator(Kenkyū-buntansha) SAKUMA Jun  Interdisciplinary School of Science and Engineering, Research Associate, 大学院総合理工学研究科, 助手 (90376963)
Project Period (FY) 2004 – 2006
KeywordsEvolutionary Computation / Genetic Algorithms / Real-coded Genetic Algorithms / Reinforcement Learning / Importance Sampling / Instance-based Policy / Multi-objective Optimization / Hybrid Genetic Algorithms
Research Abstract

Reinforcement learning handles policy search problems: searching a mapping from state to action space. However, reinforcement learning is based on gradient methods and as such, cannot deal with problems with multimodal landscape. In contrast, though Genetic Algorithms is promising to deal with them, it seems to be unsuitable for policy search from the viewpoint of the cost of evaluation. We incorporate importance sampling into the framework of genetic algorithms in order to reduce the cost of evaluation on policy search. The proposed method well applied to Markov Decision Process with multimodal landscape.
Reinforcement learning is a useful tool for complex control problems that cannot be modeled mathematically nor solved theoretically. However, a traditional value function approach such as Q-learning includes the difficulty of combinatorial explosion. Direct policy search is an alternative approach that represents a policy using some model and searches a parameter space directly for an … More optimum by optimization techniques such as genetic algorithms. Instance-based policy is one of such policy representation models. It represents a policy using a set of instances that are pairs of state and action. We present a hybrid GA to optimize efficiently a set of instances with continuous state and continuous action, given an episodic task. The proposed method named SLIP was applied to a cat twist problem and a parallel-type double inverted pendulum problem. Experiments show the effectiveness and usefulness of SLIP.
Much attention has been paid to genetic algorithms as a potent multi-objective optimization method, and the effectiveness of its hybridization with local search has recently reported. However, the existing local search methods have respective drawbacks such as high computational cost and inefficiency of improving objective function. We introduce a concept of Pareto descent directions that no other descent directions are superior in improving all objective functions. Moving solutions in such directions is expected to maximally improve all objective functions simultaneously. We propose a new local search method, Pareto desent method, which finds Pareto descent directions and moves solutions in such directions. In the case part or all of them are infeasible, it finds feasible Pareto descent directions or descent directions as necessary and moves solutions un these directions, the proposed method finds these direction by solving linear programming problems. Thus, it is computationally inexpensive. Experiments have shown that the Pareto descent method is superior to the existing methods. Less

  • Research Products

    (16 results)

All 2007 2006 2005

All Journal Article (16 results)

  • [Journal Article] 合理的政策形成アルゴリズムの連続値入力への拡張2007

    • Author(s)
      宮崎和, 木村元, 小林重信
    • Journal Title

      人工知能学会論文誌 22・3

      Pages: 332-341

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] ハイブリッドGAによるインスタンスベース政策学習-SLIPの提案と評価-2006

    • Author(s)
      土谷千加夫, 塩川祐介, 池田心, 佐久間淳, 小野功, 小林重信
    • Journal Title

      計測自動制御学会論文集 42・12

      Pages: 1344-1352

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Saving MGG : 実数値GA/MGGにおける適応度評価回数の削減2006

    • Author(s)
      田中雅晴, 土谷千加夫, 佐久間淳, 小野功, 小林重信
    • Journal Title

      人工知能学会論文誌 21・6

      Pages: 547-555

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] 多目的関数最適化のための局所探索 : パレー卜降下法2006

    • Author(s)
      原田健, 佐久間淳, 池田心, 小野功, 小林重信
    • Journal Title

      人工知能学会論文誌 21・4

      Pages: 340-350

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] 多目的関数最適化におけるGAと局所探索の組み合わせ : GA then LSの推奨2006

    • Author(s)
      原田健, 池田心, 佐久間淳, 小野功, 小林重信
    • Journal Title

      人工知能学会論文誌 21・6

      Pages: 482-492

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Saving MGG : Reducing Fitness Evaluations for Real-coded GA/MGG2006

    • Author(s)
      Tanaka, M., Tsuchiya, H., Sakuma,.J., Ono, I., Kobayashi, S.
    • Journal Title

      Journal of Japanese Society for Artificial Intelligence Vol.21, No.6

      Pages: 547-555

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] SLIP : A Sophisticated Learner for Instance-based Policy using Hybrid GA2006

    • Author(s)
      Tsuchiya, C., Shiokawa, Y., Ikeda, K., Sakuma, J., Ono, ' I., Kobayashi, S.
    • Journal Title

      Transactions of Society of Instrument and Control Engineers Vol.42, No.12

      Pages: 1344-1352

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Local Search for Multiobjective Function optimization : Pareto Descent Method2006

    • Author(s)
      Harada, K., Sakuma, J., Ikeda, K., Ono, I., Kobayashi, S.
    • Journal Title

      Journal of Japanese Society for Artificial Intelligence Vol.21, No.4

      Pages: 340-350

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Hybridization of Genetic Algorithm with Local Search in Multiobjective Function optimization : Recommendation of GA then LS2006

    • Author(s)
      Harada, K., Ikeda, K., Sakuma, J., Ono, I., Kobayashi, S.
    • Journal Title

      Journal of Japanese Society for Artificial Intelligence Vol.21, No.6

      Pages: 482-492

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] 重点サンプリングを用いたGAによる強化学習2005

    • Author(s)
      土谷千加夫, 木村元, 佐久間淳, 小林重信
    • Journal Title

      人工知能学会論文誌 20・1

      Pages: 1-10

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] α-domination戦略に基づく分散強化学習と資源共有問題への応用2005

    • Author(s)
      青木圭, 池田心, 木村元, 小林重信
    • Journal Title

      システム制御情報学会論文誌 18・1

      Pages: 81-88

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Fusion of Soft Computing and Hard Computing for Large-scale Plants : A General Model2005

    • Author(s)
      Kamiya, A., Ovaska, S.J., Roy, S., Kobayashi, S.
    • Journal Title

      Applied Soft Computing Journal 5・3

      Pages: 265-279

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Reinforcement Learning by GA using Importance Sampling2005

    • Author(s)
      Tsuchiya, C., Kimura, H., Sakuma, J., Kobayashi, S.
    • Journal Title

      Journal of Japanese Society for Artificial Intelligence Vol.20, No.1

      Pages: 1-10

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Distributed Reinforcement Learning based on a-domination Strategy and its Application to Shared Resource Problems2005

    • Author(s)
      Aoki, K, Ikeda, K., Kimura, H., Kobayashi, S.
    • Journal Title

      Journal of Institute of Systems, Control and Information Engineers Vol.18, No.3

      Pages: 81-88

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] An Extension of the Rational policy Making Algorithm to Continuous State Spaces2005

    • Author(s)
      Miyazaki, K., Kimura, H., Kobayashi, S.
    • Journal Title

      Journal of Japanese Society for Artificial Intelligence Vol.22, No.3

      Pages: 332-341

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Fusion of Soft Computing and Hard Computing. for Large-scale Plants : A General Model2005

    • Author(s)
      Kamiya, A., Ovaska, S.J., Roy, S., Kobayashi, S.
    • Journal Title

      Applied Soft Computing Journal Vol.5, No.3

      Pages: 265-279

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi