• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

Stadies on Andytic Priepeitied of autoinoiptic L-functions

Research Project

Project/Area Number 16340002
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

MATSUMOTO Koji  Nagoya University, Grad. Sch. Math, Prof (60192754)

Co-Investigator(Kenkyū-buntansha) KONDO Shigeyuki  Nagaya Univ, Grad. Sch. Math, Prof (50186847)
KANEMITU Shigeru  Kinki Univ, Dept. Eng, Prof. (60117091)
KANEKO Masahiko  Kyoetsu Univ, Grad. Sch. Math, Prof (70202017)
EGAMI Shigeki  Tayama Univ, Fac. Eng, Assit. Prof (60168771)
KOJIMA Hisashi  Saitama Univ, Fac. Sci, Prof (90146118)
Project Period (FY) 2004 – 2007
Keywordsautomcrphic L-function / automacrphic form / automcrphic L-fiuiction / Ikeda lifting / mean-valat fheoreul / multiple zeta-fanction / multiple L-function
Research Abstract

First, we have developed the theory of modular relations and have given a unified treatment of functional equations, approximate functional equations and asymptotic expansions in view of modular relations. From this viewpoint, we gave a modular-theoretic proof of asymptotic expansion formulas of Katsurada and Matsumoto on Dirichlet L-functions and Hurwitz zeta-functions. Secondly, on Ikeda liftings of Siegel modular forms, we have shown-a part of Kohnen's conjecture on the image space of Ikeda liftings. We have proved rather sharp asymptotic formula for the mean square of standard L-functions attached to modular forms which are Ikeda lifts. In particular, applying a large value lemma, we almost determined the true order of the mean square in some cases. As for the theory of multiple zeta-functions, we have developed the study of double shuffle relations of multiple zeta values, and have clarified their arithmetic structure. Also we discovered that the functional relations among multiple zeta-functions can be explained by the symmetry of Weyl groups of underlying Lie algebras. Moreover we have found that the recursive structure of the family of multiple zeta-functions can be described in terms of Dynkin diagrams.

  • Research Products

    (11 results)

All 2007 2006 2005 2004

All Journal Article (7 results) (of which Peer Reviewed: 3 results) Presentation (4 results)

  • [Journal Article] On Wiffen multiple zeta-functions associated with semisimple lie algebras I2006

    • Author(s)
      K. Matsumoto, H. Tsumura
    • Journal Title

      Ann. Inst. Fourier 56

      Pages: 1457-1504

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] On Wuttcm Multiple Zeta-fimctions arectiated with aeuiciniple Lie Algelnas I2006

    • Author(s)
      K. Mateumoto, H. Tsumcura
    • Journal Title

      Ann. Inet 56

      Pages: 1457-1504

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Some number-tlunctic application of a genetal modulan naltim2006

    • Author(s)
      S. Kanenicteu, Y. Tauigaut, H. Tsuleada
    • Journal Title

      Intem. J. Number Thecny 2

      Pages: 599-615

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Liftings and mean value theorems for automorphic L-fimctions2005

    • Author(s)
      K. Matsumoto
    • Journal Title

      Proc. London Math. Soc. (3)90

      Pages: 297-320

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Liftings and mean valece themcas for automarphic L-fancrions2005

    • Author(s)
      K. Mataumoto
    • Journal Title

      Proc. Lendon Mate. Soc (3) 90

      Pages: 297-320

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] P-adic multiple zeta values I2004

    • Author(s)
      H. Furusho
    • Journal Title

      Invent. Math. 155

      Pages: 253-286

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] P-adic muiltipe zte values I2004

    • Author(s)
      H. Furusho
    • Journal Title

      Invent. Math 155

      Pages: 253-286

    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] The moduli of plane quantics and Brdunds Produots2007

    • Author(s)
      S. Kondo
    • Organizer
      "Modulav Forms and Moduli Spaces", Fsetuinal didicated to booth, Brithday of L. Eulen, St.-Piteneling
    • Place of Presentation
      Rueeia
    • Year and Date
      20070700
    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] Mean aguane valcus of atandand L-functions attadied to Ikeda lifts2006

    • Author(s)
      K. Matsumato
    • Organizer
      Number Thary Sencican, Univ de Bardeaux 1
    • Place of Presentation
      Bordeaux, France
    • Year and Date
      2006-11-17
    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] 多重ゼータ関数の解析的理論とその応用2005

    • Author(s)
      松本 耕二
    • Organizer
      日本数学会年会
    • Place of Presentation
      日本大学
    • Year and Date
      2005-03-29
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] The analytic tlaory of nudltiple zeta-functions and application2005

    • Author(s)
      K. Mateumete
    • Organizer
      Math. Soe. Japan
    • Place of Presentation
      NIhon, Univ. Tokyo
    • Year and Date
      2005-03-29
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2010-02-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi