• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Development of Noise Robust Speech Recognition and Its Application on Mobile Environment

Research Project

Project/Area Number 16500097
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Perception information processing/Intelligent robotics
Research InstitutionYamagata University

Principal Investigator

KOSAKA Tetsuo  Yamagata University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (50359569)

Co-Investigator(Kenkyū-buntansha) KOHDA Masaki  Yamagata University, Faculty of Engineering, Professor, 工学部, 教授 (00205337)
KATOH Masaharu  Yamagata University, Faculty of Engineering, Research Assistant, 工学部, 助手 (10250953)
Project Period (FY) 2004 – 2006
Keywordsspeech recognition / noise / acoustic model / hidden Markov model / discrete HMM / MAP estimation / codebook normalization / histogram equalization
Research Abstract

1) Noisy speech recognition using DMHMMs
We have proposed new methods of robust speech recognition using discrete-mixture HMMs (DMHMMs). The aim of this work is to develop robust speech recognition for adverse conditions that contain both stationary and non-stationary noise. In particular, we focus on the issue of impulsive noise, which is a major problem in practical speech recognition system. In order to solve the problem, we have proposed two methods. First, an estimation method of DMHMM parameters based on MAP has been proposed aiming to improve trainability. The second is a method of compensating the observation probabilities of DMHMMs by threshold to reduce adverse effect of outlier values. Experimental evaluations on Japanese LVCSR for read newspaper speech showed that the proposed method achieved the average error rate reduction of 28.1% in adverse conditions that contain both stationary and impulsive noises.
2) Model Based Histogram Equalization for Noise Robust Speech Recognition by Using DMHMMs
Towards further improvement of noisy speech recognition, we have proposed a novel normalization method for codebooks of DMHMMs in this paper. The codebook normalization method is based on histogram equalization (HEQ) and it can compensate the non-linear effects of additive noise in model space. The proposed method was compared with both conventional continuous-mixture HMMs (CHMMs) and DMHMMs. It showed that the proposed method obtained the best performance, and obtained an average relative improvement of 29.2% over the CHMM baseline.

  • Research Products

    (12 results)

All 2007 2006 2005 2004

All Journal Article (11 results) Book (1 results)

  • [Journal Article] Speech Recognition and Synthesis2007

    • Author(s)
      Vedran Kordic (Editor)
    • Journal Title

      International Journal of Advanced Robotic Systems (in press)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] 発音変形依存モデルを用いた講演音声認識2006

    • Author(s)
      堤怜介, 加藤正治, 小坂哲夫, 好田正紀
    • Journal Title

      電子情報通信学会論文誌D Vol. J89-D, No.2

      Pages: 305-313

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Noisy Speech recognition Based on Codebook Normalization of Discrete-Mixture HMMs2006

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      ASA/ASJ Forth Joint Meeting 1pSC27

      Pages: 3041-3041

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Lecture Speech Recognition Using Pronunciation Variant Modeling2006

    • Author(s)
      R.Tsutsumi, M.Katoh, T.Kosaka, M.Kohda
    • Journal Title

      IEICE Transactions D Vol.J89-D, No.2

      Pages: 305-313

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Noisy Speech Recognition Based on Codebook Normalization of Discrete-Mixture HMMs2006

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      ASA/ASA Forth Joint Meeting 1pSC27

      Pages: 3041-4041

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Robust Speech Recognition Using Discrete-Mixture HMMs2005

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      IEICE Transactions on Information and Systems Vol. E88-D No.12

      Pages: 2811-2818

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Robust Speech Recognition under Non-Stationary Noise Using Discrete-Mixture HMMs2005

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      Proc. of 2005 RISP International Workshop on Nonlinear Circuits and Signal Processing

      Pages: 347-350

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Robust Speech Recognition Using Discrete-Mixture HMMs2005

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      IEICE Transactions on Information and Systems Vol.E88-D, No.12

      Pages: 2811-2818

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Robust Speech Recognition under Non-Stationary Noise Using Discrete-Mixture HMMs2005

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      Proc.of 2005 RISP International Workshop on Nonlinear Circuits and Signal Processing

      Pages: 347-350

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Noisy Speech Recognition with Discrete-Mixture HMMs Based on MAP Estimation2004

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      Proc. of The 18th International Congress on Acoustics Vol II

      Pages: 1691-1694

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Noisy Speech Recognition with Discrete-Mixture HMMs Based on MAP Estimation2004

    • Author(s)
      T.Kosaka, M.Katoh, M.Kohda
    • Journal Title

      Proc.of the 18th International Congress on Acoustics Vol.II

      Pages: 1691-1694

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] Speech Recognition and Synthesis2007

    • Author(s)
      Vedran Kordic, Editor
    • Publisher
      International Journal of Advanced Robotic Systems(未定)(印刷中)
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi