• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Applications of tight closure and F-singularity to algebraic geometry

Research Project

Project/Area Number 16540005
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTohoku University

Principal Investigator

HARA Nobuo  Tohoku University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (90298167)

Co-Investigator(Kenkyū-buntansha) ISHIDA Masanori  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (30124548)
KAJIWARA Takeshi  Tohoku University, Graduate School of Science, Research Associate, 大学院・理学研究科, 助手 (00250663)
WATANABE Kei-ichi  Nihon Univ., College of Humanities and Sciences, Professor, 文理学部, 教授 (10087083)
YOSHIDA Ken-ichi  Nagoya Univ., Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (80240802)
Project Period (FY) 2004 – 2005
Keywordstight closure / F-singularity / algebraic geometry / F-pure threshold / toric variety / tropical geometry / multiplier ideal / multiplicity
Research Abstract

Given a pair of a variety of characteristic p and an effective divisor on it, one can associate a real number called the F-pure threshold. Since this invariant is defined as a characteristic p analog of the log canonical threshold in characteristic 0, it is desirable that F-pure thresholds are rational numbers similarly as log canonical thresholds. N.Hara studied F-pure thresholds of pairs of a nonsingular surface and an effective divisor, and proved based on Monsky's idea of p-fractals that the F-pure thresholds are rational provided that the base field is finite. When the divisor is defined by a homogeneous polynomial f (x, y), the F-pure threshold c(f) can be estimated more precisely, and we can obtain a finite list of possible value of c(f) for a fixed degree d=deg f and characteristic p. We also proved that the Monsky's function ψ_f(t) has a piecewise quadratic limit as p→∞.
M.Ishida studied real fans from a viewpoint of toric geometry, as well as moduli parameter of Catanese-Ciliberto-Ishida surface. T.Kajiwara studied the theory of logarithmic abelian varieties, the relationship of tropical hypersurfaces and degeneration of projective toric varieties, and the theory of tropical toric varieties. K.-i.Watanabe studied geometric interpretation of integrally closed monomial ideals in 3 variables, multiplier ideals, and F-thresholds. K.Yoshida gave estimates of multiplicities of Stanley-Reisner rings and Buchsbaum homogeneous algebras, and studied the structure of these rings when they have minimal multiplicities.

  • Research Products

    (20 results)

All 2006 2005 2004 Other

All Journal Article (18 results) Book (2 results)

  • [Journal Article] Completion of real fans and Zariski-Riemann spaces2006

    • Author(s)
      M.Ishida, G.Ewald
    • Journal Title

      Tohoku Math J 58-2(掲載予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      N.Terai, K.Yoshida
    • Journal Title

      Proc.Amer.Math.Soc. 134

      Pages: 55-65

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Completion of real fans and Zariski-Riemann spaces2006

    • Author(s)
      M.Ishida, G.Ewald
    • Journal Title

      Tohoku Math.J. 58-2(to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A characteristic p analog of multiplier ideals and applications2005

    • Author(s)
      N.Hara
    • Journal Title

      Comm. in Algebra 33

      Pages: 3375-3388

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local Hngs2005

    • Author(s)
      K.-i.Watanabe, K.Yoshida
    • Journal Title

      Nagoya Math J 177

      Pages: 47-75

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] F-thresholds and Bernstein-Sato polynomial2005

    • Author(s)
      M.Mustata, S.Takagi, K.Watanabe
    • Journal Title

      Europian Congress of Mathematics

      Pages: 341-364

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A characteristic p analog of multi-plier ideals and applications2005

    • Author(s)
      N.Hara
    • Journal Title

      Comm.Algebra 33

      Pages: 3375-3388

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings2005

    • Author(s)
      K.-i.Watanabe, K.Yoshida
    • Journal Title

      Nagoya Math.J. 177

      Pages: 47-75

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] F-thresholds and Bernstein-Sato polynomials2005

    • Author(s)
      K.-i.Watanabe, M.Mustata, S.Takagi
    • Journal Title

      European Congress of Mathematics, Eur.Math.Soc., Zurich

      Pages: 341-364

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On a generalization of test ideals2004

    • Author(s)
      N.Hara, S.Takagi
    • Journal Title

      Nagoya Math J. 175

      Pages: 59-74

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Minimal relative Hilbert-Kunz multiplicity2004

    • Author(s)
      K.-i.Watanabe, K.Yoshida
    • Journal Title

      Illinois J.Math 48

      Pages: 273-294

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] When does the subadditivity theorem for multiplier ideals hold?2004

    • Author(s)
      K.-i.Watanabe, S.Takagi
    • Journal Title

      Trans.Amer.Math.Soc. 356

      Pages: 3951-3961

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The total coordinate ring of a normal projective variety2004

    • Author(s)
      J.Elizondo, K.Kurano, K.Watanabe
    • Journal Title

      J.Algebra 276

      Pages: 625-637

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On a generalization of test ideals2004

    • Author(s)
      N.Hara, S.Takagi
    • Journal Title

      Nagoya Math.J. 175

      Pages: 59-74

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Minimal relative Hilbert-Kunz multiplicity2004

    • Author(s)
      K.-i.Watanabe, K.Yoshida
    • Journal Title

      Illinois J.Math. 48

      Pages: 273-294

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The total coordinate ring of a normal projective variety2004

    • Author(s)
      K.-i.Watanabe, J.Elizondo, K.Kurano
    • Journal Title

      J.Algebra 276

      Pages: 625-637

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Abelian surfaces in projective toric 4-folds

    • Author(s)
      T.Kajiwara
    • Journal Title

      Arch.Math (Basel) 掲載予定

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Abelian surfaces in projective toric 4-folds

    • Author(s)
      T.Kajiwara
    • Journal Title

      Arch.Math. (Basel) (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] 代数曲線入門-はじめての代数幾何2004

    • Author(s)
      梶原 健
    • Total Pages
      323
    • Publisher
      日本評論社
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] Introduction to Algebraic Curves -The First Step to Algebraic Geometry (in Japanese)2004

    • Author(s)
      T.Kajiwara
    • Total Pages
      323
    • Publisher
      NIHON-HYORON-SHA
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi