• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Arithmetic of Automorphic Forms and Discrete Groups

Research Project

Project/Area Number 16540013
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Institute of Technology

Principal Investigator

MIZUMOTO Shin-ichiro  Tokyo Institute of Technology, Graduate School of Science and Engineering, Associate Professor, 大学院・理工学研究科, 助教授 (90166033)

Co-Investigator(Kenkyū-buntansha) KUROKAWA Nobushige  Tokyo Institute of Technology, Graduate School of Science and Engineering, Professor, 大学院・理工学研究科, 教授 (70114866)
SHIGA Hriroshige  Tokyo Institute of Technology, Graduate School of Science and Engineering, Professor, 大学院・理工学研究科, 教授 (10154189)
HATTORI Toshiaki  Tokyo Institute of Technology, Graduate School of Science and Engineering, Associate Professor, 大学院・理工学研究科, 助教授 (30251599)
NAKAYAMA Chikara  Tokyo Institute of Technology, Graduate School of Science and Engineering, Assistant, 大学院・理工学研究科, 助手 (70272664)
SOMEKAWA Mutsuro  Tokyo Institute of Technology, Graduate School of Science and Engineering, Assistant, 大学院・理工学研究科, 助手 (70251600)
Project Period (FY) 2004 – 2005
KeywordsAutomorphic Forms / Discrete Groups / L-functions
Research Abstract

Mizumoto found that some congruences for Fourier coefficients of Siegel modular forms are preserved under the Eisenstein liftings of arbitrary degree. The proof is based on the integral representation due to Garrett and Boecherer for the Eisenstein series attached to cusp forms. In the course of investigation, he found also that such congruences give rise to congruences for the values at a critical point of corresponding standard L-functions. His recent research also shows that similar phenomena occur also in other types of liftings such as Shimura correspondences and the Ikeda liftings, and he hopes to treat such topics in future.
Kurokawa constructed and studied multi-trigonometric functions. In particular, he studied algebraicity and transcendency of their values. In connection with this topic, he also studied absolute tensor products, absolute differentiation, q-analogues of Mahler measures, and Selberg zeta functions.
Shiga investigated Teichmueller spaces of infinite dimension and mapping class groups. He studied the condition under which the action of the mapping class group becomes properly discontinuous.
Hattori studied applications of hyperbolic geometry to Diophantine equations.
Nakayama introduced analyitic etale site, and obtained the log Riemann-Hilbert correspondence with quasi-unipotent monodromy. He also proved its functoriality.
Somekawa constructed fundamental theory for the values of p-adic L-functions for algebraic varieties.

  • Research Products

    (12 results)

All 2005

All Journal Article (12 results)

  • [Journal Article] Congruences for Fourier coefficients of lifted Siegel modular forms I : Eisenstein lifts2005

    • Author(s)
      S.Mizumoto
    • Journal Title

      Abh. Math. Sem. Univ. Hamburg 75

      Pages: 97-120

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Multiple Euler products2005

    • Author(s)
      N.Kurokawa, S.Koyama
    • Journal Title

      St.Petersburg Mathematical Journal 11

      Pages: 123-166

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Euler' s integrals and multiple sine functions2005

    • Author(s)
      N.Kurokawa, S.Koyama
    • Journal Title

      Proc. Amer. Math. Soc. 133・5

      Pages: 1257-1265

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Extensions of zeta functions- Examples and a study of the double sine functions2005

    • Author(s)
      N.Kurokawa, M.Wakayama
    • Journal Title

      Acta Applicandae Mathematicae 86・1-2

      Pages: 179-201

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On complex analytic properties of limit sets and Julia sets2005

    • Author(s)
      H.Shiga
    • Journal Title

      Kodai Math. J. 28

      Pages: 368-381

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Quasi-unipotent logarithmic Riemann-Hilbert correspond-ences2005

    • Author(s)
      C.Nakayama, K.Kato, L.Illusie
    • Journal Title

      J. Math. Sci. Univ. Tokyo 12

      Pages: 1-66

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Congruences for Fourier coefficients of lifted Siegel modular Forms I : Eisenstein lifts2005

    • Author(s)
      S.Mizumoto
    • Journal Title

      Abh.Math.Sem.Univ.Hamburg vol.75

      Pages: 97-120

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Multiple Euler products2005

    • Author(s)
      N.Kurokawa, S.Koyama
    • Journal Title

      St.Petersburg Math.J. vol.11

      Pages: 123-166

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Euler's integrals and multiple sine functions2005

    • Author(s)
      N.Kurokawa, S.Koyama
    • Journal Title

      Proc.Amer.Math.Soc. vol.133

      Pages: 1257-1265

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Extensions of zeta functions-Examples and a study of the double sine functions2005

    • Author(s)
      N.Kurokawa, M.Wakayama
    • Journal Title

      Acta Applicandae Mathematicae vol.86

      Pages: 179-201

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On complex analytic properties of limit sets and Julia sets2005

    • Author(s)
      H.Shiga
    • Journal Title

      Kodai Math.J. vol.28

      Pages: 368-381

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Quasi-unipotent logarithmic Riemann-Hilbert correspondences2005

    • Author(s)
      C.Nakayama, K.Kato, L.Illusie
    • Journal Title

      J.Math.Sci.Univ.Tokyo vol.12

      Pages: 1-66

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi