• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

Research of the cancellation problem in affine algebraic geometry

Research Project

Project/Area Number 16540016
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of Toyama

Principal Investigator

ASANUMA Teruo  University of Toyama, Faculty of Science, Professor, 理学部, 教授 (50115127)

Co-Investigator(Kenkyū-buntansha) ONODA Nobuharu  University of Fukui, Faculty of Engineering, Professor, 工学部, 教授 (40169347)
Project Period (FY) 2004 – 2005
Keywordsaffine algebraic geometry / algebraic curve / polynomial ring / valuation ring / cancellation problem / algebraic function field
Research Abstract

From the abstracts of papers in the references :
(1)We give an algebraic structure theorem of purely inseparable $k$-forms of geometrically normal affine plane curves over a field $k$ of characteristic $p>2$.
(2)Let $R$ be a discrete valuation ring with quotient field $K$ and residue field $k$. For a finitely generated integrally closed domain $A$ over $R$, we give an explicit algebraic structure of the reduced $k$-algebra $(Aotimes_Rk)_{rm red}$ when the generic fibre $Aotimes_RK$ is a polynomial ring or a Laurent polynomial ring in one variable over $K$.
(3)Let $V$ be a valuation ring with residue field $k$ and quotient field $K$. Let $K(x,y)$ be an algebraic function field in one variable over $K$ defined by a polynomial equation $f(x,y)=0$ and let $V_{xy}$ be a valuation ring of $K(x,y)$ with residue field $k_{xy}$. Suppose that $V_{xy}$ dominates $V$ and $k_{xy}/k$ is a transcendental field extension. Then $k_{xy}$ is an algebraic function field in one variable over $k$. We consider a $k$-algebraic structure of $k_{xy}$. In particular when $k$ is an algebraic closed field of characteristic zero, we will give a defining equation $g(z,w)$ of such $k_{xy}=k(z,w)$ explicitly when $y^2=x^m+lambda_1x+lambda_0$ for $0<m$ and $lambda_0,lambda_1in K$.

  • Research Products

    (6 results)

All 2006 2005 Other

All Journal Article (6 results)

  • [Journal Article] Valuation rings of algebraic function fields in one variable2006

    • Author(s)
      浅沼照雄, 小野田信春
    • Journal Title

      宮西正宜教授退官記念論文集 Affine Algebraic Geometry 1(発行予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Purely inseparable $k$-forms of affine algebraic curves2005

    • Author(s)
      浅沼照雄
    • Journal Title

      Affine algebraic geometry, Contemporary Mathematics 369

      Pages: 31-46

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Generic fibrations by $A^1$ and $A-*$ over discrete valuation rings2005

    • Author(s)
      浅沼照雄, S.M.Bhatwadekar, 小野田信春
    • Journal Title

      Affine algebraic geometry, Contemporary Mathematics 369

      Pages: 47-62

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Purely inseparable $k$-forms of affine algebraic curves2005

    • Author(s)
      Teruo Asanuma
    • Journal Title

      Affine Algebraic Geometry, Contemp.Math. 369

      Pages: 31-46

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Generic fibrations by $A^1$ and $A^*$ over discrete valuation rings2005

    • Author(s)
      Teruo Asanuma, S.M.Bhatwadekar, Nobuharu Onoda
    • Journal Title

      Affine Algebraic Geometry, Contemp.Math. 369

      Pages: 47-62

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Valuation rings of algebraic function fields in one variable

    • Author(s)
      Teruo Asanuma, Nobuharu Onoda
    • Journal Title

      Affine Algebraic Geometry in honor of Professor Masayoshi Miyanishi (Osaka University Press) (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi