• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Research for multiplicities and tight closures on singular points of positive characteristic

Research Project

Project/Area Number 16540021
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

YOSHIDA Kenichi  Nagoya University, Graduate School of Mathematics, Assistant Professor, 大学院多元数理科学研究科, 助教授 (80240802)

Co-Investigator(Kenkyū-buntansha) HASHIMOO Mitsuyasu  Magoya University, Graduate School of Mathematics, Assistant Professor, 大学院多元数理科学研究科, 助教授 (10208465)
ITO Yukari  Nagoya University, Graduate School of Mathematics, Lecturer, 大学院多元数理科学研究科, 講師 (70285089)
WATANABE Kei-ichi  Nihon University, Department of Mathematics, College of Humanities and Sciences, Professor, 文理学部, 教授 (10087083)
Project Period (FY) 2004 – 2006
KeywordsHilbert-Kunz multiplicity / multiplicity / tight closure / multiplier ideal / singularity / F-regular / Buchsbaum rings / Stanley・Reisner rings
Research Abstract

1. On Lower bounds for Hilbert-Kunz multiplicities:
We have proved that any unmixed local ring with Hilbert-Kunz multiplicity one is a regular local ring before starting this research. Indeed, this theorem is a generalization of Nagata's classical theorem in positive characteristic. In this research, we considered a problem of finding a lower bound on Hilbert-Kunz multiplicities for non-regular local rings. As a result, we found a conjecture that such a lower bound is attained by quadratic hypersurface, and proved that it is true for local rings of at most dimension 4. The lower bound given by us is interesting in algebraic geometry, but we cannot obtain any sufficient theory. Moreover, the conjecture was proved by Enescu-Shimamoto in the case of complete intersections.
2. Minimal Hilbert-Kunz multiplicity
The notion of minimal Hilbert-Kunz multiplicities was introduced by us to estimate of badness of F-regular local rings. The invariant is a real number in the interval between 0 and 1. Recently, Aberbach etc. proved that a local ring is F-regular if and only if its minimal Hilbert-Kunz multiplicity is positive. We determined the minimal Hilbert-Kunz multiplicities for affine toric singularities and quotient singularities, which are typical F-regular rings.
3. Characterization of Buchsbaum Stanley-Reisner rings with minimal multiplicity.
We studied minimal free resolutions, multiplicities, h-vectors for Buchsbaum Stanley-Reisner rings together with Naoki Terai at Saga University. In particular, we gave a lower bound for multiplicities for those rings, and characterized such rings.

  • Research Products

    (8 results)

All 2006 2005 2004

All Journal Article (8 results)

  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Proc. Amer. Math. Soc. 134

      Pages: 55-65

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Stanley-Reisner rings with large multiplicities are Cohen-Macaulay2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      J. Algebra 301

      Pages: 493-508

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Buchsbaum Stanley-Reisner rings and Cohen-Macaulay covers2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Comm. Algebra 34

      Pages: 2673-2681

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal Multiplicity2006

    • Author(s)
      Naoki Terai, Kenichi Yoshida
    • Journal Title

      Proc. Amer. Math. Soc. 134

      Pages: 55-65

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Buchsbaum Stanley・Reisner rings and Cohen-Macaulay covers2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Comm. Algebra 34

      Pages: 2673-2681

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings2005

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Nagoya Math. J. 177

      Pages: 47-75

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Minimal relative Hilbert-Kunz multiplicity2004

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Illinois J. Math. 48

      Pages: 273-294

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] When does the subadditivity theorem for multiplier ideals hold?2004

    • Author(s)
      Shunsuke Takagi, Kei-ichi Watanabe
    • Journal Title

      Trans. Amer. Math. Soc. 356

      Pages: 3951-3961

    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi