• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2005 Fiscal Year Final Research Report Summary

General study of modular forms and arithmetic varieties

Research Project

Project/Area Number 16540042
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo University of Science

Principal Investigator

HAMAHATA Yoshinori  Tokyo University of Science, Faculty of Science and Engineering, Associate Professor, 理工学部, 助教授 (90260645)

Co-Investigator(Kenkyū-buntansha) AGOH Takashi  Tokyo University of Science, Faculty of Science and Engineering, Professor, 理工学部, 教授 (60112893)
HOSOH Toshio  Tokyo University of Science, Faculty of Science and Engineering, Associate Professor, 理工学部, 助教授 (30130339)
AOKI Hiroki  Tokyo University of Science, Faculty of Science and Engineering, Lecturer, 理工学部, 講師 (10333189)
GOTO Takeshi  Tokyo University of Science, Faculty of Science and Engineering, Research Associate, 理工学部, 助手 (20366438)
Project Period (FY) 2004 – 2005
Keywordsmodular forms / elliptic curves
Research Abstract

The purpose of head investigator was to study properties of Hilbert modular cusps. We joined some workshops and seminars to get information and discuss about modular forms. We organized a workshop on Hilbert modular forms. Thanks to this workshop, we understood fundamental and recent results.
Our results are as follows :
1.We established some results on the structure of rings of modular forms and infinite products of modular forms.
2.We established some results on the existence of perfect numbers and their analogue.
3.We described Selmer groups of elliptic curves in terms of graphs.

  • Research Products

    (8 results)

All 2006 2005 2004

All Journal Article (8 results)

  • [Journal Article] Estimate of the dimensims of Hilbert modular forms by means of differential operators2006

    • Author(s)
      H.Aoki
    • Journal Title

      Proc. of Antomorphic Forms and Zeta Functions

      Pages: 20-28

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Hilbert modular曲面状の曲線の交差数と保型形式2006

    • Author(s)
      浜畑 芳紀
    • Journal Title

      整数論サマースクール報告集 13

      Pages: 177-187

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Estimate of the dimensions of Hilbert modular forms by means of differential operators2006

    • Author(s)
      H.Aoki
    • Journal Title

      Proc.of Automorphic Forms and Zeta Functions

      Pages: 20-28

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Intersection numbers of curves on Hilbert modular surfaces and modular forms2006

    • Author(s)
      Y.Hamahata
    • Journal Title

      Proc.of number theory summer school 13

      Pages: 177-187

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Simple grnded rings of Siegel modular forms, differential operators and Borcherds products2005

    • Author(s)
      H.Aoki, T.Ibukiyama
    • Journal Title

      International J. Math. 16

      Pages: 249-279

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Simple graded rings of siegel modular forms, differential operators and Borcherds products2005

    • Author(s)
      H.Aoki, T.Ibukiyama
    • Journal Title

      International J.Math. 16

      Pages: 249-279

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Allnumbers whose positive divisors have integral harmonic mean up to 3002004

    • Author(s)
      T.Goto, S.Shibata
    • Journal Title

      Math. Comp. 73

      Pages: 475-491

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] All numbers whose positive divisors have integral harmonic mean up to 3002004

    • Author(s)
      T.Goto, S.Shibata
    • Journal Title

      Math.Comp. 73

      Pages: 475-491

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2007-12-13  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi