• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Topology of nonintegrable plane fields

Research Project

Project/Area Number 16540053
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionChiba University

Principal Investigator

INABA Takashi  Chiba University, Graduate School of Science and Technology, Professor, 自然科学研究科, 教授 (40125901)

Co-Investigator(Kenkyū-buntansha) TSUBOI Takashi  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院数理科学研究科, 教授 (40114566)
KUGA Ken'ichi  Chiba University, Faculty of Science, Professor, 理学部, 教授 (30186374)
HINO Yoshiyuki  Chiba University, Faculty of Science, Professor, 理学部, 教授 (70004405)
TAKAGI Ryoichi  Chiba University, Faculty of Science, Professor, 理学部, 教授 (00015562)
SUGIYAMA Ken-ichi  Chiba University, Faculty of Science, Associate Professor, 理学部, 助教授 (90206441)
Project Period (FY) 2004 – 2006
Keywordsnonintegrable plane fields / Engel structure / rigidity / characteristic curve / projective structure / contact manifolds of higher order / geometric entropy
Research Abstract

The purpose of this research was to study nonintegrable plane fields from the topological viewpoint and clarify their global behavior.
First, we considered the rigidity of loops tangent to Engel plane fields. Given a characteristic curve with the initial point being fixed, we completely determined how the terminal point of the curve can vary by small perturbations of the curve in the space of tangential curves to the plane field. Especially, we obtained the following: The trace of terminal points under perturbations becomes an open set if and only if the developing image of the curve with respect to the canonical projective structure coincides with the whole projective line. As an application of this result we got the following: Any non-affine characteristic loop is non-rigid. We also showed that every 1-dimensional projective structure of the circle can be realized as the canonical projective structure of some characteristic loop in some Engel manifold.
Next, we studied the rigidity in higher dimensions. We showed that maximal integral submanifolds of the symbol plane fields on contact manifolds of higher orders are always locally rigid. We also produced an example of a rigid torus in some manifold endowed with a nonintegrable plane field.
Thirdly, we tried to generalize the Ghys-Langevin-Walczak geometric entropy of foliations to the nonintegrable cases. To define an entropy, we need to use integral curves. We recognized that if we exclusively use integral curves with bounded geometry we are able to define a notion of entropy for nonintegrable plane fields.
Parts of these results have been published in the proceedings of the international conference FOLIATIONS 2005, under the title : On rigidity of submanifold a tangent to nonintegrable foliations.

  • Research Products

    (12 results)

All 2006 2005 Other

All Journal Article (12 results)

  • [Journal Article] On rigidity of submanifolds tangent to nonintegrable distributions2006

    • Author(s)
      Takashi Inaba
    • Journal Title

      The Proceedings of the International Conference FOLIATIONS 2005, World Scientific

      Pages: 203-214

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the group of foliation preserving diffeomorphisms2006

    • Author(s)
      Takashi Tsuboi
    • Journal Title

      The Proceedings of the International Conference FOLIATIONS 2005, World Scientific

      Pages: 411-430

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On some formulas in combinatorial computation of uni-trivalent graphs2006

    • Author(s)
      Kazutaka Hanawa, Ken' ichiKuga
    • Journal Title

      Indian Journal of Pure and Applied Mathematics 37・2

      Pages: 75-88

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface2006

    • Author(s)
      Ken-ichi Sugiyama
    • Journal Title

      Mathematische Nachrichten 279・1-2

      Pages: 217-231

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On rigidity of submanifolds tangent to nonintegrable distributions2006

    • Author(s)
      Takashi Inaba
    • Journal Title

      World Scientific, (The Proceedings of the International Conference FOLIATIONS 2005,)

      Pages: 203-214

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the group of foliation preserving diffeomorphisms2006

    • Author(s)
      Takashi Tsuboi
    • Journal Title

      World Scientific, (The Proceedings of the International Conference FOLIATIONS 2005,)

      Pages: 411-430

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On some formulas in combinatorial computation of uni-trivalent graphs2006

    • Author(s)
      Kazutaka Hanawa, Ken'ichi Kuga
    • Journal Title

      Indian Journal of Pure and Applied Mathematics, 37-2

      Pages: 75-88

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface2006

    • Author(s)
      Ken-ichi Sugiyama
    • Journal Title

      Mathematische Nachrichten, 279-1-2

      Pages: 217-231

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Stability properties of linear Volterra integrodifferential equations in a Banach space2005

    • Author(s)
      Yoshiyuki Hino, Satoru Murakami
    • Journal Title

      Funkcialaj Eqvacioj 48・3

      Pages: 367-392

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Stability properties of linear Volterra integrodifferential equations in a Banach space2005

    • Author(s)
      Yoshiyuki Hino, Satoru Murakami
    • Journal Title

      Funkcialaj Eqvacioj, 48-3

      Pages: 3667-392

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Structure Jacobi operator of real hypersurfaces with constant scalar curvature in a nonflat complex space form

    • Author(s)
      U-Hang Ki, Setsuo Nagai, Ryoichi Takagi
    • Journal Title

      Tokyo Journal of Mathematics 受理済み

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Structure Jacobi operator of real hypersurfaces with constant scalar curvature in a nonflat complex space form

    • Author(s)
      U-Hang Ki, Setsuo Nagai, Ryoichi Takagi
    • Journal Title

      Tokyo Journal of Mathematics (accepted)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi