• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Homotopy Theoretic Study of Higher Dimensional Categories

Research Project

Project/Area Number 16540061
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

NISHIDA Goro  Kyoto University, Graduate school of sciences, Professor, 大学院理学研究科, 教授 (00027377)

Co-Investigator(Kenkyū-buntansha) FUKAYA Kenji  Kyoto University, Graduate school of sciences, Professor, 大学院理学研究科, 教授 (30165261)
KONO Akira  Kyoto University, Graduate school of sciences, Professor, 大学院理学研究科, 教授 (00093237)
NAKAJIMA Hiraku  Kyoto University, Graduate school of sciences, Professor, 大学院理学研究科, 教授 (00201666)
MINAMI Norihiko  Nagoya institute of technology, Graduate school of Engineering, Professor, 大学院工学研究科, 教授 (80166090)
SHIMOMURA Katumi  Kochi University, Faculty of sciences, Professor, 理学部, 教授 (30206247)
Project Period (FY) 2004 – 2006
Keywordsformal group / simplicial set / symmetric group / cohomology / linear group / K-theory / homotopy type
Research Abstract

I tried to make a new construction of algebraic K-theory based on formal group laws of general heights, e.g., Honda group law. Formal group laws other than additive or multiplicative group, do not give algebraic groups, but can be regarded as a gamma set defined by Segal. Since a gamma set is a simplicial set, we have a homotopy type by taking the geometric realization. We consider the full matrix algebra over a ring of integers of a local field. Then the resulting homotopy type is a candidate for a space of algebraic K-theory of higher height. First I studied the cohomology group of the space. In the case of multiplicative group, the space is the classifying space of the general linear group. The cohomology is symmetric polynomials of the cohomology of the maximal torus. If the height of the formal group law is h, then the dimension of the maximal torus is h-times of the ordinary case. Then we obtain a multi-symmetric polynomials as cohomology of the space for the candidate. What we have to do next is to define or construct the representation theory based on a given formal group law of higher height. In particular I hope to get a group theoretic interpretation of Hokins-Kuhn-Ravenel character not using the Morava K-theory.

  • Research Products

    (10 results)

All 2007 2006

All Journal Article (10 results)

  • [Journal Article] Lusternik-Schnirelman category of Spin(9)2007

    • Author(s)
      Akira Kono
    • Journal Title

      Trans. Amer. Math. Soc. 359

      Pages: 1517-1526

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A note on the Samelson products in π* (SO(2n)) and the group [SO(2n), SO(2n)]2007

    • Author(s)
      Akira Kono
    • Journal Title

      Topology Appl. 154

      Pages: 567-572

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Lusternik-Schnirelman category of Spin(9)2007

    • Author(s)
      Akira Kono
    • Journal Title

      Trans.Amer.Math.Soc. 359

      Pages: 1517-1526

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A note on the Samelson products in n * (S(2n)) and the group [SO(2n), So(2n)]2007

    • Author(s)
      Akira Kono
    • Journal Title

      Topology Appl. 154

      Pages: 567-572

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Metric Riemannian geometry2006

    • Author(s)
      Kenji Fukaya
    • Journal Title

      Handbook of differential geometry 2

      Pages: 189-313

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Self homotopy groups with large nilpotency classes2006

    • Author(s)
      Akira Kono
    • Journal Title

      Topology Appl. 153

      Pages: 2425-2439

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Unstable K1-group and homotopy type of certain gauge group2006

    • Author(s)
      Akira Kono
    • Journal Title

      Proc. Roy. Soc. Edinburgh Sect. A 136

      Pages: 149-155

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Level 0 monomial crystals2006

    • Author(s)
      Hiraku Nakajima
    • Journal Title

      Nagoya Math. J 184

      Pages: 85-153

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Unstable K1-group and homotopy type of certain gauge group2006

    • Author(s)
      Akira Kono
    • Journal Title

      Proc.Roy.Soc.Edinburgh Sect.A 136

      Pages: 149-155

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Level 0 monoidal crystals2006

    • Author(s)
      Hiraku Nakajima
    • Journal Title

      Nagoya Math. J. 184

      Pages: 85-153

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi