• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Construction of exotic homology manifolds and generalization of Quinn index

Research Project

Project/Area Number 16540064
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionShizuoka University

Principal Investigator

KOYAMA Akira  Shizuoka University, Graduate School of Science and Technology, Professor, 創造科学技術大学院, 教授 (40116158)

Co-Investigator(Kenkyū-buntansha) SUGAHARA Kunio  Osaka Kyoiku University, Faculty y of Education, Professor, 教育学部, 教授 (20093255)
UNO Katsuhiro  Osaka Kyoiku University, Faculty of Education, Professor, 教育学部, 教授 (70176717)
YAGASAKI Tatsuhiko  Kyoto Institute of Technology, Faculty of Engineering and Design, Associate Professor, 工芸学部, 助教授 (40191077)
HATTORI Yasunao  Shimane University, The Interdisciplinary Faculty of Science and Engineering, Professor, 総合理工学部, 教授 (20144553)
YOKOI Yatsuya  Shimane University, The Interdisciplinary Faculty of Science and Engineering, Associate Professor, 総合理工学部, 助教授 (90240184)
Project Period (FY) 2004 – 2006
KeywordsGeometric Topology / Cohomological dimension / Embeddings / Symmetric Products
Research Abstract

By SP^n(X) we denote the n-fold symmetric product of a topological space X. We have investigated the problem what kind of n-dimensional compact metric spaces can be embedded into the n-fold symmetric product SP^n(X) of a one-dimensional continuum X. Our result is the following :
Theorem 1. The n-dimensional sphere S^n cannot be embedded into the n-fold symmetric product of any one-dimensional continuum X.
In order to prove Theorem we have calculated the n-dimensional cohomology group of the bouquet of the 1-sphere S^1. In fact, we showed that the n-fold symmetric product of the bouquet of the 1-sphere S^1 can be embedded into the Cartesian product of the n-fold symmetric products of 1-sphere S^1. Moreover the embedding image is the retract of the product space. Therefore we can calculate cohomology group of the symmetric product as follows :
Theorem 2. H^n(SP^n(vS^1)) is isomorphic to the direct sum of the n-dimensional cohomology groups of the n-dimensional tori.
Theorem 1 follows from Theorem 1 by Dydak-Koyama(Bull. Polish Academy of Sciences, 2000, 48(1), 51-56).
We have another notion of symmetric products. Namely, for a topological space X let F_n(X) be the set of all nonempty subsets of X whose cardinalities are at most n. We often call F_n(X) endowed the Hausdorff metric the n-fold symmetric product of X. In general, F_2n(X) is equal to SP^2(X), but if n > 2, F_n(X) is different from SP^n(X). However, as those product have similarities, we have the same problem what kind of n-dimensional compact metric spaces can be embedded into the n-fold symmetric product F_n(X) of a one-dimensional continuum X. As a folhlore we know Borsuk-Bott Theorem: F_3(S^1) is isomorphic to the 3-dimensional sphere S^3. We also investigate this theorem and give a modern proof and a generalizations.

  • Research Products

    (18 results)

All 2007 2006 2005 2004 Other

All Journal Article (18 results)

  • [Journal Article] Groups of measure-preserving homeomorphisms of noncompact 2-manifolds2007

    • Author(s)
      Yagasaki, Tatsuhiko
    • Journal Title

      Topology and its Applications 207

      Pages: 1521-1531

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Groups of measure-preserving homeomorphisms of noncompact 2-manifolds2007

    • Author(s)
      Tatsuhiko. Yagasaki
    • Journal Title

      Topology and its Applications 154

      Pages: 1521-1531

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Algebraic structure of association schemes of prime order2006

    • Author(s)
      Hanaki, Akihide, Uno, Katsuhiro
    • Journal Title

      Journal of Algebraic Combinatorics 23(2)

      Pages: 189-195

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Elementary divisors of Cartan matrices for symmetric groups2006

    • Author(s)
      Uno, Katsuhiro, Hiro-fumi, Yamada
    • Journal Title

      Journal of the Mathematical Society 58(4)

      Pages: 1031-1036

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Partitions of spaces by locally compact subspaces2006

    • Author(s)
      Chatyrko, V, Hattori, Yasunao, Ohta, H
    • Journal Title

      Houston J. Math. 32(4)

      Pages: 1077-1091

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Algebraic structure of association schemes of prime order2006

    • Author(s)
      Akihide Hanaki, Katsuhiro Uno
    • Journal Title

      Journal of Algebraic Combinatorics 23.2

      Pages: 189-195

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Elementary divisors of Cartan matrices for symmetric groups2006

    • Author(s)
      Katsuhiro Uno, Hiro-Fumi Yamada
    • Journal Title

      Journal of the Mathematical Society )(2006) 58.4

      Pages: 1031-1036

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Partitions of spaces by locally compact subspaces2006

    • Author(s)
      V.A.Chatyrko, Y.Hattori, H.Ohta
    • Journal Title

      Houston J. Math. 32.4

      Pages: 489-501

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds2005

    • Author(s)
      Yagasaki, Tatsuhiko o
    • Journal Title

      Topology and its Applications 153(2-3)

      Pages: 174-207

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Strong transitivity and graph maps2005

    • Author(s)
      Yokoi, Katsuya
    • Journal Title

      Bull. Pol. Acad. Sci. Math. 53(4)

      Pages: 377-388

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds2005

    • Author(s)
      Tatsuhiko. Yagasaki
    • Journal Title

      Topology and its Applications 153.2-3.

      Pages: 174-207

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Strong transitivity and graph maps2005

    • Author(s)
      Katsuya Yokoi
    • Journal Title

      Bull. Pol. Acad. Sci. Math. 53(4)

      Pages: 377-388

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Recent development of cohomological dimension theory - Existence and applications of Edwards-Walsh resolutions2004

    • Author(s)
      Koyama, Akira
    • Journal Title

      Sugaku Expositions, Amer. Math. Soc. 17(2)

      Pages: 125-150

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The behavior of dimension functions on unions of closed subsets2004

    • Author(s)
      Charalambous, M, Chatyrko, M, Hattori, Yasunao
    • Journal Title

      Journal of the Mathematical Society 56(3)

      Pages: 489-501

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Recent development of cohomological dimension theory-Existence and applications of Edwards-Walsh resolutions2004

    • Author(s)
      Koyama, Akira
    • Journal Title

      Sugaku Expositions, Amer. Math. Soc. 17.2

      Pages: 125-150

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The behavior of dimension functions on unions of closed subsets2004

    • Author(s)
      M.Charalambous, V.Chatyrko, Y.Hattori
    • Journal Title

      Journal of the Mathematical Society of Japan 56.3

      Pages: 489-501

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] There is no upper bound of small transfinite compactness degree in metrizable spaces

    • Author(s)
      Chatyrko, M, Hattori, Yasunao
    • Journal Title

      Topology and its Applications (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] There is no upper bound of small transfinite compactness degree in metrizable spaces

    • Author(s)
      V.A.Chatyrko, Y.Hattori
    • Journal Title

      Topology and its Applications (in press)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi