• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Relations of geometric structure of manifolds and graphs, spectre, asymptotic analysis and their applications

Research Project

Project/Area Number 16540068
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOKAYAMA UNIVERSITY

Principal Investigator

KATSUDA Atsushi  Okayama University, Graduate School of Natural Science, Associate Professor, 大学院自然科学研究科, 助教授 (60183779)

Co-Investigator(Kenkyū-buntansha) KIYOHARA Kazuyoshi  Okayama University, Graduate School of Natural Science, Professor, 大学院自然科学研究科, 教授 (80153245)
TAMURA Hideo  Okayama University, Graduate School of Natural Science, Professor, 大学院自然科学研究科, 教授 (30022734)
SHIMAKAWA Kazuhisa  Okayama University, Graduate School of Natural Science, Professor, 大学院自然科学研究科, 教授 (70109081)
YOSHIOKA Iwao  Okayama University, Graduate School of Natural Science, Associate Professor, 大学院自然科学研究科, 助教授 (70033199)
IKEDA Akira  Okayama University, Graduate School of Natural Science, Professor, 教育学部, 教授 (30093363)
Project Period (FY) 2004 – 2006
Keywordsinverse problem / stability / boundary distance
Research Abstract

We studied inverse problems from geometric view points. A boundary distance representation of a Riemannian manifold with boundary is the set of functions which represent the distance from the given point in a manifold to points in the boundary. We study the question whether this representation determines the Riemannian manifolds in a stable way if this manifold satisfies some a priori geometric bounds. The answer is affermative, moreover, given a discrete set of approximate boundary distance functions, we construct a finite metric space that approximates the manifold in the Gromov-Hausdorff topology.
In applications, the boundary distance representation appears in many inverse problems, where measurements are made on the boundary of the object under investigations. For example, for the heat equation with unknown heat conductivity, the boundary measurements determine the boundary distance representation of the Riemannian metric which corresponds to this conductivity. The Gel'fand inverse problem, which asks whether a Riemannian manifold with boundaries can be determined by the eigenvalues and boundary values of the eigenfunctions of the Laplacian, first the boundary distance representation is determined and second they determines the Riemannian metric of the interior. Analogus problems exists for Maxwell and Dirac equations.
Besides collaborating the above works, each investigator studied own works. Kiyohara studied behavior of geodesics on the Liouville manifolds, Tamura studied scattering under two solenoidal magnetic fields, Shimakawa studied topology of configuration spaces, Sakai studied isodiadic inequlities, Yoshioka studies g-fuctions, Tanaka studied semigroups of operators. Takeuchi studied p-harmonic functions on graphs.

  • Research Products

    (9 results)

All 2007 2006 2004

All Journal Article (9 results)

  • [Journal Article] Stability of boundary representation and reconstruction of Riemannian Manifolds.2007

    • Author(s)
      A.Katsuda, Y.Kurylev, M.Lassas
    • Journal Title

      Inverse Problems and Imaging 1

      Pages: 135-157

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Stability of boundary representation and reconstruct ion of Riemannian Manifolds.2007

    • Author(s)
      A.Katsuda, Y.Kurylev, M.Lassas
    • Journal Title

      Inverse Problems and Imaging. 1

      Pages: 135-157

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Exponential product approximation to the integral kernel of the Schrodinger semigroup.....2006

    • Author(s)
      I.Ichinose, H.Tamura
    • Journal Title

      J.Reine Angew. Math. 592

      Pages: 157-188

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Exponetial product approximation to the integral kernel of the Schrodinger semigroup2006

    • Author(s)
      T.Ichinose, H.Tamura
    • Journal Title

      J.Reine Angew. Math. 592

      Pages: 157-188

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Boundary regularity for the Ricci equation, geometric convergence, and Gel' fand inverse boundary problem2004

    • Author(s)
      M.Anderson, A.Katsuda 他3名
    • Journal Title

      Invent. Math. 158

      Pages: 261-321

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Scattering of Dirac particles by electromagnetic fields with small support in two dimensions and effect...2004

    • Author(s)
      H.Tamura
    • Journal Title

      Ann. Henri Poincare 5

      Pages: 75-118

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The cut loci and conjugate loci on ellipsoids2004

    • Author(s)
      J.Itoh, K.Kiyohara
    • Journal Title

      Manuscripta Math. 114

      Pages: 247-264

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Nonautonomous abstract Cauchy problem for strongly measurable families2004

    • Author(s)
      N.Tanaka
    • Journal Title

      Math. Nachr. 274/275

      Pages: 130-153

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Boundary regularity for the Ricci equat ion, geometric convergence, and Gel' fand inverse boundary problem2004

    • Author(s)
      M.Anderson, A.Katsuda et al.
    • Journal Title

      Invent. Math. 158

      Pages: 261-321

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi