• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Isometric imbeddings of Riemannian manifolds and their rigidity

Research Project

Project/Area Number 16540070
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

AGAOKA Yoshio  Hiroshima University, Graduate School of Science, Professor, 大学院理学研究科, 教授 (50192894)

Co-Investigator(Kenkyū-buntansha) USAMI Hiroyuki  Hiroshima University, Graduate School of Science, Associate Professor, 大学院理学研究科, 助教授 (90192509)
NAKAYAMA Hiromichi  Hiroshima University, Graduate School of Science, Associate Professor, 大学院理学研究科, 助教授 (30227970)
KONNO Hitoshi  Hiroshima University, Graduate School of Science, Associate Professor, 大学院理学研究科, 助教授 (00291477)
KANEDA Eiji  Osaka University of Foreign Studies, Faculty of Foreign Studies, Professor, 外国語学部, 教授 (90116137)
Project Period (FY) 2004 – 2006
KeywordsRiemannian manifold / submanifold / symmetric space / Gauss equation / rigidity / canonical imbedding / curvature / class number
Research Abstract

S.Kobayashi has constructed canonical isometric imbeddings of Riemannian symmetric spaces. Among these spaces we showed that the canonical isometric imbeddings of the Cayley projective plane P^2(Cay), the quaternion projective plane P^2(H), the symplectic group Sp(n), and the Hermitian symmetric space Sp(n)/U(n) are rigid in the local sense. (This work is collaborated with E.Kaneda.) We already know that the canonical isometric imbeddings for these spaces give the least dimensional isometric imbeddings into the Euclidean spaces even in the local standpoint. The above results show that these imbeddings possess the essential uniqueness, which give the crucial results of local isometric imbeddings for these spaces. This theorem is proved by showing the essential uniqueness of solutions of the Gauss equation in a given codimension. The proof heavily depends on the character for each space, and it seems impossible to treat these spaces in a unified way. But the rigidity of the canonical isometric imbedding seems to hold for a wider class of spaces, and to show this conjecture is our next task.
As another result, we showed that the class number of the complex projective space P^n(C) and the quaternion projective space P^n(H) is larger than or equal to 2n-2, and 4n-3, respectively. This result improves our previous estimate on the class number for these spaces. (This work is also collaborated with E.Kaneda.) To prove this result, we examine extensively the maximal pseudo-abelian subspaces, and show that the Gauss equation does not admit a solution in a given codimension. But the gap between the known upper bound estimate and the above lower bound estimate of the class number for these two spaces is quite large, and we must fill this gap in our next study.

  • Research Products

    (12 results)

All 2007 2006 2005 2004 Other

All Journal Article (12 results)

  • [Journal Article] Rigidity of the canonical isometric imbedding of the symplectic group Sp(n)2007

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal 36巻 1号

      Pages: 79-110

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Rigidity of the canonical isometric imbedding of the symplectic group Sp(n)2007

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal Vol.36 No.1

      Pages: 79-110

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Rigidity of the canonical isometric imbedding of the quaternion projective plane P^2(H)2006

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal 35巻 1号

      Pages: 119-138

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A lower bound for the class number of P^n(C) and P^n(H)2006

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal 35巻 4号

      Pages: 753-766

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Rigidity of the canonical isometric imbedding of the quaternion projective plane P^2(H)2006

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal Vol.35 No.1

      Pages: 119-138

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A lower bound for the class number of P^n(C) and PAn(H)2006

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal Vol.35 No.4

      Pages: 753-766

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Rigidity of the canonical isometric imbedding of the Cayley projective plane P^2(Cay)2005

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal 34巻 2号

      Pages: 331-353

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Rigidity of the canonical isometric imbedding of the Cayley projective plane P^2(Cay)2005

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal Vol.34 No.2

      Pages: 331-353

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] 対称リーマン空間の局所等長埋め込みと剛性2004

    • Author(s)
      阿賀岡芳夫
    • Journal Title

      数学 56巻 4号

      Pages: 400-417

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Local isometric imbeddings of Riemannian symmetric spaces and their rigidity2004

    • Author(s)
      Y.Agaoka
    • Journal Title

      Sugaku Vol.56 No.4

      Pages: 400-417

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Rigidity of the canonical isometric imbedding of the Hermitian symmetric space Sp(n)/U(n)

    • Author(s)
      Y.Agaoka
    • Journal Title

      Hokkaido Mathematical Journal に掲載決定

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Rigidity of the canonical isometric imbedding of the Hermitialn symmetric space Sp(n)/U(n)

    • Author(s)
      Y.Agaoka
    • Journal Title

      to appear in Hokkaido Mathematical Journal (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi