• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

ASYMPTOTICAL ANALYSIS FOR EXPONENTIAL FUNCTIONALS IN INFINITE DIMENSIONAL STOCHASTIC MODELS

Research Project

Project/Area Number 16540097
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTokyo Institute of Technology

Principal Investigator

SHIGA Tokuzo  Tokyo Institute of Technology, Graduate School of Science and Technology, Professor, 大学院理工学研究科, 教授 (60025418)

Co-Investigator(Kenkyū-buntansha) HAMANA Yuji  Kumamoto University, Faculty of Science, Professor, 理学部, 教授 (00243923)
SHIRAI Tomoyuki  Kyushu University, Graduate School of Matematical Science, Associate Professor, 大学院数理学研究院, 助教授 (70302932)
NOMURA Yuji  Tokyo Institute of Technology, Graduate School of Science and Engineering, Assistant Professor, 大学院理工学研究科, 助手 (40282818)
INAHAMA Yuzuru  Tokyo Institute of Technology, Graduate School of Science and Engineering, Assistant Professor, 大学院理工学研究科, 助手 (80431998)
Project Period (FY) 2004 – 2006
KeywordsParabolic Anderson model / Lyapunov exponent / Levy noise / random environment / random distribution / Levy-Khinchin formula / Levy-Ito representation
Research Abstract

We performed this research project on "Asymptotical analysis for exponential functionals in stochastic models", and obtained the following results.
1.Asymptotical analysis of the Lyapunov exponent of the Paraboloc Anderson model ; In the case of space-time Gaussian white noise potential the asymptotical order of the Lyapunov exponent relativet to the coupling constant has been obtained and in this project we extend it to more general space-time Levy noise and obtained an precise asymptotical order together with reasonable interpretation of the constant appearing in it.
2.For the theory of random motions in random environments we proposed a new approach, which is based upon a stochastic analysis of random probability distributions (RPD),. This may be regarded as an intermediate one between quenched analysis and annealed analysis. For this aim we defined infinitely divisible RPDs and Levy processes taking values in the set of probability distributions, and we proved Levy-Khinchin formula for infinitely divisible RPDs, and Levy-Ito type representation for the Levy processes using a new type of Poisson integrals. Furthermore we applied this theory to a random motion in a random environment and obtained new type of limit theorems.
3.Concerning the theme of the project collaborators obtained the following interesting results.
(a)It was proved that a scaling limit of point process of eigenvalues of random matrices is identified with the Fermion point process, for which the central limit theorem and large deviation results were obtained.
(b)Concernning of the range of random walks, a large deviation result was obtained under a conditional probability law of pinning.
(c)Rough path analysis was developed largely, and applied it to Taylor expansion of Ito maps and related to infinite-dimensional stochastic analysis.

  • Research Products

    (15 results)

All 2007 2006 2005 2004

All Journal Article (15 results)

  • [Journal Article] Asymptotic expansions for the Laplace approximations for Ito functionals of Brownian rough paths2007

    • Author(s)
      Y.Inahama, K.Kawabi
    • Journal Title

      Journal of Functional Analysis 243

      Pages: 270-322

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Asymptotic expansions for the Laplace approximations for Ito functionals of Brownian rough paths2007

    • Author(s)
      Y.Inahama, K.Kawabi
    • Journal Title

      243

      Pages: 270-322

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Infinitely divisible random probability distributions with application to a random motion in a random environment2006

    • Author(s)
      T.Shiga, H.Tanaka
    • Journal Title

      Electronic Journal of Probability 11

      Pages: 1144-1183

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Large deviations for the fermion point process associated with the exponential kernel2006

    • Author(s)
      T.Shirai
    • Journal Title

      Journal of Statistical Physics 123

      Pages: 615-629

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Non-bipartiteness of infinite graphs and upper bound of Dirichlet forms2006

    • Author(s)
      Y.Higuchi, T.Shirai
    • Journal Title

      Potential Analysis 25

      Pages: 259-268

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the range of pinned random walks2006

    • Author(s)
      Y.Hamana
    • Journal Title

      Tohoku Journal of Mathematics 58

      Pages: 329-358

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Quasi-sure existence of Brownian rough paths and a construction of Brownian pants2006

    • Author(s)
      Y.Inahama
    • Journal Title

      Inf. Dimens. Anal. Quantum Probab. Relat. Top. 9

      Pages: 513-528

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Large deviations for the fermion point process associated with the exponential kernel2006

    • Author(s)
      T.Shirai
    • Journal Title

      Journal of Statistical Physics 112

      Pages: 615-629

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Non-bipartiteness of infinite graphs and upper bound of Dirichlet forms2006

    • Author(s)
      Y.Higuchi, T.Shirai
    • Journal Title

      25

      Pages: 259-268

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the range of pinned random walks2006

    • Author(s)
      Y.Hamana
    • Journal Title

      58

      Pages: 329-358

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Quasi-sure existence of Brownian rough paths and a construction of Brownian pants, Infinite Dimensional Analysis2006

    • Author(s)
      Y.Inahama
    • Journal Title

      Quantum Probabability and Related Topics 9

      Pages: 513-528

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Lyapunov exponents for the parabolic Anderson model with Levy noise2005

    • Author(s)
      M.Cranston, T.Mountford, T.Shiga
    • Journal Title

      Probability Theory and Related Fields 132

      Pages: 321-355

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Lyapunov exponents for the parabolic Anderson model with Levy noise, Probability2005

    • Author(s)
      M.Cranston, T.Mountford, T.Shiga
    • Journal Title

      Theory and Related Fields 132

      Pages: 321-355

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Probabilistic analysis of directed polymers in a random environment : a review. Stochastic analysis on large scale interacting systems2004

    • Author(s)
      F.Comets, T.Shiga, N.Yoshida
    • Journal Title

      Advanced Studies in Pure Mathematics 39

      Pages: 331-355

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Probabilistic analysis of directed polymers in a radom environment : a review. Stochastic analysis on large scale interacting systems2004

    • Author(s)
      F.Comets, T.Shiga, N.Yoshida
    • Journal Title

      Advanced Studies in Pure Mathematics 39

      Pages: 331-355

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi