• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Research on Jorgensen groups and classical Schottky groups

Research Project

Project/Area Number 16540147
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionShizuoka University

Principal Investigator

SATO Hiroki  Shizuoka University, Faculty of Science, Professor, 理学部, 教授 (40022222)

Co-Investigator(Kenkyū-buntansha) NAKANISHI Toshihiro  Shimane University, Interdisciplinary Faculty of Science and Engineering, Professor, 総合理工学部, 教授 (00172354)
OKUMURA Yoshihide  Shizuoka University, Faculty of Science, Associate Professor, 理学部, 助教授 (90214080)
KOYAMA Akira  Shizuoka University, Faculty of Science, Professor, 理学部, 教授 (40116158)
KUMURA Hironori  Shizuoka University, Faculty of Science, Associate Professor, 理学部, 助教授 (30283336)
Project Period (FY) 2004 – 2006
KeywordsJorgensen group / Jorgensen number / classical Schottky group / Schottky group / Kleinian group / Schottky space / Jorgensen's inequality / uniformization of a Riemann surface
Research Abstract

We have studied the following four themes from 2004 to 2006. 1. Jorgensen groups. 2. The Whitehead link group. 3. Jorgensen numbers. 4. Classical Schottky groups.
1. Jorgensen groups. A Jorgensen group is a non-elementary two-generator discrete group whose Jorgensen number is one. There are two types-parabolic type and elliptic type-for Jorgensen groups. Here we considered of parabolic type. There are three types for Jorgensen groups of parabolic type (finite type, countably infinite type and uncountably infinite type). We found all Jorgensen groups during 2004, and 2006. The results were talked at the Mathematical Society of Japan, the RIMS, Kyoto university and the International congress of Mathematicians in Joensuu, Finland. Furthermore, they were published from Osaka J. Math. Kodai Math. J. and Comput Methods Funct. Theory.
2. The Whitehead link group. We proved that the Jorgensen number of the Whitehead link is two. Therefore the Whitehead link is not a Jorgensen group. This result was published at Boletin de Soc. Mat. Mex.
3. Jorgensen numbers. We showed that for every natural number and every real number greater than four there exists a classical Schottky group whose Jorgensen number is the number.
4. Classical Schottky groups. We did not obtain any meaningful results.
We are planning the following : (1) To study structures of 3-manifolds represented by Jorgensen groups (2) To find all Jorgensen groups of elliptic type (3) To find Jorgensen numbers of (classical) Schottky groups and (4) To study a uniformization of a Riemann surfaces by classical Schottky groups.

  • Research Products

    (12 results)

All 2006 2005 2004 Other

All Journal Article (12 results)

  • [Journal Article] Jorgensen numbers of discrete groups2006

    • Author(s)
      Hiroki Sato, M. Oichi
    • Journal Title

      RIMS Koukyuuroku 1518

      Pages: 14

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Jorgensen numbers of discrete groups2006

    • Author(s)
      H.Sato, M.Oichi
    • Journal Title

      RIMS kokyuroku 1518 (Kyoto Univ.)

      Pages: 105-118

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Jorgensen groups of parabolic type I2005

    • Author(s)
      Hiroki Sato, C. Li, M. Oichi
    • Journal Title

      Computational Methods and Function Theory 5・2

      Pages: 22

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Jorgensen groups of parabolic type III2005

    • Author(s)
      Hiroki Sato, C.Li, M. Oichi
    • Journal Title

      Kodai Mathematical Journal 28・2

      Pages: 17

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Jorgensen groups of parabolic type I (finite case)2005

    • Author(s)
      H.Sato, C.L, M.Oichi
    • Journal Title

      Comput. Methods Funct. (Theory 5) 2

      Pages: 409-430

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Jorgensen groups of parabolic type III (uncountably infinite case)2005

    • Author(s)
      H.Sato, C.L, M.Oichi
    • Journal Title

      Kodai Math. J. 28 2

      Pages: 248-264

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The Jorgensen number of the Whitehead link group2004

    • Author(s)
      Hiroki Sato
    • Journal Title

      Boletin de Soc. Mat. Mex. 10

      Pages: 8

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Recent development of cohomological dimension theory Existence and applicaion of Edwards-Walsh resolutions2004

    • Author(s)
      Akira Koyama
    • Journal Title

      Sugaku Expositions 17・2

      Pages: 26

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The Jorgensen number of the Whitehead link group2004

    • Author(s)
      H.Sato
    • Journal Title

      Bol. Soc. Mat. Mexicana (3) 10 (Special Issue)

      Pages: 495-502

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Recent development of cohomological dimension theory, Existence and applicaion of Edwards-Walsh resolutions2004

    • Author(s)
      A.Koyama
    • Journal Title

      Sugaku Expositions 17.2

      Pages: 1-26

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A trace identity for parabolic elements of SL(2, C)

    • Author(s)
      Toshihiro Nakanishi
    • Journal Title

      Kodai Mathematical Journal (To appear)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A trace Identity for parabolic elements of SL(2,C)

    • Author(s)
      T.Nakanishi, M.Naatanen
    • Journal Title

      to appear in Kodai Math.J.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi