• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

Nonlinear partial differntial equations related to geometric variational problems

Research Project

Project/Area Number 16540188
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionNagoya University

Principal Investigator

NAITO Hisashi  Nagoya University, Graduate School of Mathematics, Associate Professor (40211411)

Co-Investigator(Kenkyū-buntansha) NAYATANI Shin  Nagoya University, Graduate School of Mathematics, Professor (70222180)
MAEDA Yoshiaki  Keio University, Department of Mathematics, Professor (40101076)
TACHIKAWA Atsushi  Tokyo Science University, Department of Mathematics, Professor (50188257)
KUBO Masashi  Nagoya University, Graduate School of Mathematics, Associate Professor (20319148)
ISHIGE Kazuhiro  Tohoku University, Department of Mathematics, Associate Professor (90272020)
Project Period (FY) 2004 – 2007
KeywordsDifferential Geometry / Harmonic Map / Variational Problems / Crystal Lattices
Research Abstract

The head investigator researches the geometric visualization of standard realized crystal lattices, which related with harmonic maps as an example of geometric variational problems. The standard realization of crystal lattices is defined by Kotani-Sunada, and it is considered as a realization of real crystals in nature. The definition of crystal lattice is an abelian covering of finite graph. The covering transformation group and/or the first fundamental group of a finite graph is its the first homology group and it is abelian. So, the crystal lattice is an abelian convering graph of a finite graph. The standard realization of a crystal lattices is defined using harmonic maps into Albanese Torus. Hence the definition is very abstract.
The head investigator construct an application to visualize the standard realization of crystal lattices. Sunada constructs K4 Crystal Lattice as the standard realization of K4 Graph in 3-dimensional Euclidean space. Our application plays important role in calculations of the K4 real crystal with Carbon atoms

  • Research Products

    (8 results)

All 2007 2005

All Journal Article (6 results) (of which Peer Reviewed: 3 results) Presentation (2 results)

  • [Journal Article] Non-formal deformation quantization of Frechet-Poisson algebras2007

    • Author(s)
      H. Omori, Y. Maeda, el. al.
    • Journal Title

      Comtemp. Math. 434

      Pages: 99-123

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Geometry objects in an approach to quantum geometry2007

    • Author(s)
      H. Omori, Y. Maeda, el. al.
    • Journal Title

      Progr. Math. 252

      Pages: 303-324

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Non-formal defomation quantization of Frechlet-Poisson algebras2007

    • Author(s)
      H. Omori, Y. Maeda, et. al
    • Journal Title

      Comtemp. Math Vol.434(CONCERNED)

      Pages: 99-123

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Geometry objects in an approach to quantum geometry2007

    • Author(s)
      H. Omori, Y. Maeda, et. al
    • Journal Title

      Progr. Math Vol.252(CONCERNED)

      Pages: 303-324

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Partial regularity for the minimizer of quadratic functionals with VMO coefficients2005

    • Author(s)
      M. A. Ragusa, A. Tachikawa
    • Journal Title

      J. London Math. Soc.(2) 72

      Pages: 609-620

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Partial regularity for the minimizer of quadratic functional with VMO coefficients2005

    • Author(s)
      M. A. Regusa, A. Tachikawa
    • Journal Title

      J. London Math. Soc. (2) Vol.72(CONCERNED)

      Pages: 609-620

    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] Partial regularity of harmonic maps into Finsler spaces2007

    • Author(s)
      A. Tachikawa
    • Organizer
      International conference "Variational Problems in Geometry"
    • Place of Presentation
      仙台国際センター
    • Year and Date
      2007-09-19
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Partial regularity for the minimizer of harmonic maps into Finsler spaces2007

    • Author(s)
      A. Tachikawa
    • Organizer
      International conferences "Variational Problems in Geometry
    • Place of Presentation
      SENDAI
    • Year and Date
      2007-09-19
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2010-02-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi