• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

The study of quantum toroidal algebras

Research Project

Project/Area Number 16540192
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionOsaka University

Principal Investigator

MIKI Kei  Osaka University, Graduate school of information science and technology, associate professor, 大学院情報科学研究科, 助教授 (40212229)

Co-Investigator(Kenkyū-buntansha) DATE Etsuro  Osaka University, Graduate school of information science and technology, professor, 大学院情報科学研究科, 教授 (00107062)
YAMANE Hiroyuki  Osaka University, Graduate school of information science and technology, associate professor, 大学院情報科学研究科, 助教授 (10230517)
Project Period (FY) 2004 – 2006
KeywordsQuantum group / Toroidal Lie algebra / Difference operator / Virasoro algebra
Research Abstract

1.Miki investigated the following: (1)Let C_γ be the algebra of Laurent polynomials in x and y satisfying the relation xyγ^2yx. The quantum toroidal algebra of type sl_n is a q deformation of the universal enveloping algebra of the derived algebra of the Lie algebra M_n(C_γ). He considered some quotient algebra arising from this algebra and clarified the relation of it to algebras of symmetric Laurent polynomials and Macdonald difference operators. (2)He introduced a q analogue of the universal enveloping algebra of a central extension of the Lie algebra C_γ. For this q analogue the following studies were done. (i)From the tensor product of N representations in terms of one boson he obtained the free field realization of the q deformed W_N algebra (Virasoro algebra in the case N=2) introduced by Frenkel and Reshetikhin, and Shiraishi and his collaborators. (ii)A representation of this algebra is called quasifinte if each weight space of it is finite dimensional. Quasi irreducible highest weight representations were proved to be characterized by some rational function. (iii)The Yangina limit of this algebra was studied.
2.Date studied the quasi-invarinats and locus configurations of Coxeter groups. He also investigated the differential equations for polynomials which arise in the study of the Bethe ansatz for the Chiral Potts model.
3.Yamane obtained a presentation of elliptic (super) Lie algebras of rank【greater than or equal】2 in terms of a finite number of generators and relations. He also classified finite dimensional irreducible representations of Z/3Z quantum groups, which can be regarded as a Z/3Z graded version of super quantum groups. He further introduced a Coxeter groupoid and proved Matsumoto's theorem in a joint work with Heckenberger.

  • Research Products

    (13 results)

All 2007 2006 2005 2004

All Journal Article (12 results) Book (1 results)

  • [Journal Article] Representations of a Z/3Z-Quantum Group2007

    • Author(s)
      H.Yamane
    • Journal Title

      Publ. RIMS, Kyoto Univ. 43

      Pages: 75-93

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Representations of a Z/3Z-Quantum Group2007

    • Author(s)
      H.Yamane
    • Journal Title

      Publ.RIMS, Kyoto Univ. 43

      Pages: 75-93

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Some quotient algebras arising from the quantum toroidal algebra U_q(sl_{n+1} (C_gamma)) (n≧2)2006

    • Author(s)
      K.Miki
    • Journal Title

      Osaka Journal of Mathematics 43

      Pages: 895-922

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Some quotient algebras arising from the quantum toroidal algebra U_q(sl_{n+1}(C_\ gamma)) (n≧2)2006

    • Author(s)
      K.Miki
    • Journal Title

      Osaka J.Math. 43

      Pages: 895-922

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Solitons and Kac-Moody Lie algebras2006

    • Author(s)
      E.Date
    • Journal Title

      Encyclopedia of Mathematical Physics(Elsevier)

      Pages: 594-602

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Some quotient algebras arising from the quantum toroidal algebra U_q(sl_2(C_gamma))2005

    • Author(s)
      K.Miki
    • Journal Title

      Osaka Journal of Mathematics 42

      Pages: 885-929

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Some quotient algebras arising from the quantum toroidal algebra U_q(sl_2(C_\gamma))2005

    • Author(s)
      K.Miki
    • Journal Title

      Osaka J.Math. 42

      Pages: 885-929

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Integrable irreducible highest weight modules for sl_2(C_p[x^{pm 1}, y^{pm 1}]).2004

    • Author(s)
      K.Miki
    • Journal Title

      Osaka Journal of Mathematics 41

      Pages: 295-326

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On an analog of the Onsager algebras of type D_n^{(1)}2004

    • Author(s)
      E.Date, K.Usami
    • Journal Title

      Contemporary Mathematics, Kac-Moody Lie algebras and related topics, AMA 343

      Pages: 43-51

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A Serre-type theorem for the elliptic Lie algebras with rank ≧22004

    • Author(s)
      H.Yamane
    • Journal Title

      Publ. RIMS, Kyoto Univ. 40

      Pages: 441-469

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Integrable irreducible highest weight modules for sl_2(C_p[x^{\pm 1},y^{\pm 1}])2004

    • Author(s)
      K.Miki
    • Journal Title

      Osaka J.Math. 41

      Pages: 295-326

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A Serre-type theorem for the elliptic Lie algebras with rank ≧2,2004

    • Author(s)
      H.Yamane
    • Journal Title

      Publ.RIMS, Kyoto Univ. 40

      Pages: 441-469

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] Solitons and Kac-Moody Lie algebras in "Encyclopedia of Mathematical Physics2006

    • Author(s)
      E.Date
    • Total Pages
      9
    • Publisher
      Elsevier
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi