• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

Stability of nonlinear waves in viscous conservation system together with diffusion phenomena of solutions of damped wave equation

Research Project

Project/Area Number 16540206
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionWaseda University

Principal Investigator

NISHIHARA Kenji  Waseda University, Faculty of Political Science and Economics, Professor (60141876)

Co-Investigator(Kenkyū-buntansha) MATSUMURA Akitaka  Osaka University, Graduate School of Information Science and Technology, Professor (60115938)
Project Period (FY) 2004 – 2007
Keywordssystem of conservation law / nonlinear waves / stability / damped wave equation / diffusion phenomena / absorbing term / sourcing term
Research Abstract

The system of conservation laws has the shock wave, rarefaction wave and contact discontinuity as nonlinear waves. In real physics, it may become the system of viscous conservation laws by some viscous effect, which yields the viscous shock wave, rarefaction wave and viscous contact wave with diffusion wave. Our aim of this research is to observe the stability of the waves.
In our research the viscous effect is by the usual Newton viscosity or friction in porous media flow. The flow approaches to the solution of corresponding parabolic system by Darcy's law, which implies that the damped wave equation behaves as the corresponding diffusion equation as time tends to infinity, what we call the diffusion phenomena. The observation of this phenomena is another aim of this research. The stability of viscous contact wave in the viscous conservation laws with Newton's viscosity has been mainly developed by the investigator. The diffusion phenomena of solutions to the damped wave equation has been investigated by the head investigator, based on the fact that the solution of the Cauchy problem far the linear damped wave equation is decomposed to the sum of the wave part exponentially decaying and the diffusion part For the corresponding diffusion equation, rather precise results are obtained thanks to the smoothing effects and the maximum principle, but these key properties do not hold for the wave equation, and further studies are necessary.

  • Research Products

    (25 results)

All 2008 2007 2006 2005 2004

All Journal Article (12 results) (of which Peer Reviewed: 9 results) Presentation (12 results) Book (1 results)

  • [Journal Article] Asymptotic behavior of solutions for the damped wave equation with slowly decaying data2008

    • Author(s)
      T.Narazaki, K.Nisbihara
    • Journal Title

      J.Math.Anal.Appl. 338

      Pages: 803-819

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Asymptotic behavior of solutions for the damped wave equation with slowly decaying data2008

    • Author(s)
      T. Narazaki, K. Nishihara
    • Journal Title

      J. Math, Anal. Appl 338

      Pages: 803-819

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Local Energy Decay for Wave Equations with Initial Data Decaying Slowly Near Infinity2006

    • Author(s)
      R.Ikehata, K.Nishihara
    • Journal Title

      Math.Sci.Appl. 22

      Pages: 265-275

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption2006

    • Author(s)
      K.Nishihara, H.Zhao
    • Journal Title

      J.Math.Anal.Appl. 313

      Pages: 598-610

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Global asymptoitcs of solutions to the Cauchy problem for the damped wave equation with absorption2006

    • Author(s)
      R.Ikehata, K.Nishihara, H.Zhao
    • Journal Title

      J.Differential Equations 226

      Pages: 1-29

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Asymptotic profile of solutions to nonlinear dissipative evolution system with ellipticity2006

    • Author(s)
      K.Nishihara
    • Journal Title

      Z.angew.Math.Phys 57

      Pages: 604-614

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Global asymptotics for the damped wave equation with absorption in higer dimensional space2006

    • Author(s)
      K.Nishihara
    • Journal Title

      J.Math.Soc.Japan 58

      Pages: 805-836

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption2006

    • Author(s)
      K. Nishihara, H. Zhao
    • Journal Title

      J. Math, Anal. Appl 313

      Pages: 598-610

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Global asymptotics for the damped wave equation with absorption in Higher dimensional space2006

    • Author(s)
      K. Nishihara
    • Journal Title

      J. Math. Soc. Japan 58

      Pages: 805-836

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations2004

    • Author(s)
      K.Nishihara, H.Zhao
    • Journal Title

      SIAM J.Math.Anal. 35

      Pages: 1561-1597

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Global stability of strong rarefaction waves of the Jin-Xin relaxation model for the $p$-system2004

    • Author(s)
      K.Nishihara, H.Zhao, Y.Zhao
    • Journal Title

      Comm.Partial Differential Equations 29

      Pages: 1607-1634

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Existence and nonexistence of time-global solutions to damped wave equation on half-line2004

    • Author(s)
      K.Nishihara, H.Zhao
    • Journal Title

      Nonlinear Analysis 61

      Pages: 931-960

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Presentation] Asymptotic profile of solutions to a parabolic system of chemotaxis in one dimensional space2008

    • Author(s)
      K.Nishihara
    • Organizer
      東海大学発展方程式シンポジウム
    • Place of Presentation
      東海大学
    • Year and Date
      20080300
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Asymptotic behavior of solutions for the damped wave equation with slowly decaying data2007

    • Author(s)
      K.Nishihara
    • Organizer
      東海大学発展方程式シンポジウム
    • Place of Presentation
      東海大学
    • Year and Date
      20070300
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Behavior of solutions to the Cauchy problem for the damped wave equation2007

    • Author(s)
      K.Nishihara
    • Organizer
      6th ISAAC Congress
    • Place of Presentation
      Ankara,Turkey
    • Year and Date
      2007-08-19
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Behavior of solutions to the Cauchy problem for the damped wave equation2007

    • Author(s)
      K. Nishihara
    • Organizer
      ISAAC Congress
    • Place of Presentation
      Ankara, Turkey
    • Year and Date
      2007-08-19
    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] Behavior of solutions to the Cauchy problem for the damped wave equation with absorption2006

    • Author(s)
      K.Nishihara
    • Organizer
      International Conference on Nonlinear Evolutionary Partial Differential Equations
    • Place of Presentation
      Xining,China
    • Year and Date
      20060800
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Large-time behavior of solutions for the damped wave equation2006

    • Author(s)
      K.Nishihara
    • Organizer
      AIMS 6th International Conference on Dynamical Systems, Differential Equations and Applications
    • Place of Presentation
      Poitiers,France
    • Year and Date
      20060600
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] 消散型波動方程式のCauchy問題の解の漸近挙動2005

    • Author(s)
      K.Nishihara
    • Organizer
      東海大学シンポジウム「偏微分方程式の諸問題」
    • Place of Presentation
      東海大学
    • Year and Date
      20051000
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Asymptotic behavior of solutions to the Cauchy problem for the damped wave equation2005

    • Author(s)
      K.Nishihara
    • Organizer
      Conference "Self-similar solutions in nonlinear PDE's"
    • Place of Presentation
      Bedlewo,Poland
    • Year and Date
      20050900
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Large-time behavior of solutions for the damped wave equation2005

    • Author(s)
      K.Nishihara
    • Organizer
      京都大学数理解析研究所シンポジウム「流体と気体の数学解析」
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      20050700
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption2005

    • Author(s)
      K.Nishihara
    • Organizer
      東海大学発展方程式シンポジウム
    • Place of Presentation
      東海大学
    • Year and Date
      20050300
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Asymptotic behavior of solutions to the damped wave equation related to the heat equation2004

    • Author(s)
      K.Nishihara
    • Organizer
      WCNA-2004
    • Place of Presentation
      Orland,USA
    • Year and Date
      20040600
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Asymptotic behavior of solutions to the damped wave equation related to the heat equation2004

    • Author(s)
      K.Nishihara
    • Organizer
      International Conference on Nonlinear Evolutionary Partial Differential Equations
    • Place of Presentation
      Zhen-Jiang,China
    • Year and Date
      2004-05-16
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] 非線形微分方程式の大域解-圧縮性粘性流の数学解析-2004

    • Author(s)
      松村 昭孝, 西原 健二
    • Total Pages
      303
    • Publisher
      日本評論社
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2010-02-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi