• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Annual Research Report

局所体上の多様体のChow群とBrauer群

Research Project

Project/Area Number 16740005
Research InstitutionTohoku University

Principal Investigator

山崎 隆雄  東北大学, 大学院・理学研究科, 助教授 (00312794)

Keywords局所体上の多様体 / 代数的サイクル / 高次Chow群 / Brauer群 / 高次元類体論 / 代数的完全可積分系
Research Abstract

今年度は、代数体上の多様体の高次Chow群に関する研究を行った。具体的な成果として、代数体上の曲線の積の高次Chow群の構造に関するKahnの予想を部分的に(可除な群を法として)証明することができた。 Kahnの予想は、曲線の高次Chow群に関するBlochの予想を曲線の積に拡張したものである。 Blochの予想は、 Raskindによって可除な群を法として証明されている。我々の結果とKahnの予想の関係は、Raskindの結果とBlochの予想の関係に並行的である。
この結果の証明は、曲線の積の高次Chow群に関するRaskind-Spiessの研究を利用した上で、次の二つの(曲線に関する)結果を組み合わせることで行われる。
第一のものは、昨年度までに得られた局所体上の多様体に関する次の研究結果である:局所体上のgoodまたはsemi-stable reductionを持つ曲線を考える。すると、基礎体の有限次拡大に付随する高次Chow群(の主要部)のノルム写像は全射になる。(なお、この結果は、昨年度行った類体論に関する研究でも中心的な役割を果たした。)
第二のものは、次の「ハッセのノルム定理の高次Chow群における類似」である:代数体上の曲線を考える。その高次Chow群の元が、基礎体の有限次拡大に付随する高次Chow群のノルム写像の像に入るための必要十分条件は、全ての完備化でノルム写像の像に入ることである。(上記した咋年度の結果から、局所的な条件はほとんど全ての素点で成立することに注意。なお、ハッセのノルム定理は体の乗法群に関する類似の定理である。)
最後に、井上玲氏・小西由紀子氏との共同研究で、代数曲線のヤコビ多様体を等レベル面に持つような代数的完全可積分系で新しいタイプのものを構成することが出来た。

  • Research Products

    (2 results)

All 2007 2006

All Journal Article (2 results)

  • [Journal Article] Jacobian variety and integrable system---after Mumford, Beauville and Vanhaecke2007

    • Author(s)
      Rei Inoue, Yukiko Konishi, Takao Yamazaki
    • Journal Title

      Journal of Geometry and Physics 57

      Pages: 815-831

  • [Journal Article] Cohomological study on variants of the Mumford system, and integrability of Noumi-Yamada system2006

    • Author(s)
      Rei Inoue, Takao Yamazaki
    • Journal Title

      Communications in Mathematical Physics 265

      Pages: 699-719

URL: 

Published: 2008-05-08   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi