• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Annual Research Report

量子論における同時操作不可能性とその順序構造による特徴づけ

Research Project

Project/Area Number 16F16702
Research InstitutionKyoto University

Principal Investigator

宮寺 隆之  京都大学, 工学研究科, 准教授 (50339123)

Co-Investigator(Kenkyū-buntansha) HAAPASALO ERKKA  京都大学, 工学(系)研究科(研究院), 外国人特別研究員
Project Period (FY) 2016-07-27 – 2018-03-31
Keywordsquantum measurement
Outline of Annual Research Achievements

We study positive kernels on X×X, where X is a set equipped with an action of a group, and taking values in the set of A-sesquilinear forms on a (not necessarily Hilbert) module over a C*-algebra A. These maps are assumed to be covariant with respect to the group action on X and a representation of the group in the set of invertible (A-linear) module maps. We find necessary and sufficient conditions for extremality of such kernels in certain convex subsets of positive covariant kernels. Our focus is mainly on a particular example of these kernels: a completely positive (CP) covariant map for which we obtain a covariant minimal dilation (or KSGNS construction). We determine the extreme points of the set of normalized covariant CP maps and, as a special case, study covariant quantum observables and instruments whose value space is a transitive space of a unimodular type-I group. As an example, we discuss the case of instruments that are covariant with respect to a square-integrable representation.

Research Progress Status

29年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

29年度が最終年度であるため、記入しない。

  • Research Products

    (3 results)

All 2017

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Covariant KSGNS construction and quantum instruments2017

    • Author(s)
      E.Haapasalo, J.-P. Pellonpaa
    • Journal Title

      Rev.Math.Phys.

      Volume: 29 Pages: 1-47

    • DOI

      10.1142/S0129055X17500209

    • Peer Reviewed
  • [Journal Article] Optimal quantum observables2017

    • Author(s)
      E.Haapasalo, J.-P. Pellonpaa
    • Journal Title

      J. Math. Phys,

      Volume: 58 Pages: 122104

    • DOI

      doi.org/10.1063/1.4996809

    • Peer Reviewed
  • [Presentation] Quantifying quantum incompatibility.2017

    • Author(s)
      E. Haapasalo
    • Organizer
      Quantum Incompatibility
    • Int'l Joint Research / Invited

URL: 

Published: 2018-12-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi