• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Annual Research Report

結び目と3次元多様体の有限型不変量と量子不変量

Research Project

Project/Area Number 16F16716
Research InstitutionKyoto University

Principal Investigator

大槻 知忠  京都大学, 数理解析研究所, 教授 (50223871)

Co-Investigator(Kenkyū-buntansha) MOUSSARD DELPHINE  京都大学, 数理解析研究所, 外国人特別研究員
Project Period (FY) 2016-10-07 – 2019-03-31
Keywords結び目 / 3次元多様体 / 不変量
Outline of Annual Research Achievements

特別研究員のデルフィーヌさんは、結び目と3次元多様体の不変量について研究している。
論文「Equivariant triple intersections」(Annales de la Faculte des Sciences de Toulouse, 2017)の研究で、デルフィーヌさんは、有理ホモロジー球面の中の null homologous な結び目の不変量を、曲面の3重交叉を用いて、定義した。すなわち、結び目補空間の無限巡回被覆空間を考え、結び目を境界とする曲面のリフトを3つ、その空間の中で考え、それらの3重交叉として、その不変量が定義される。
結び目補空間の無限巡回被覆を用いて結び目の不変量を構成する研究は、従来の研究では、コンセビッチ不変量のループ展開がその手法で構成される不変量である。コンセビッチ不変量のループ展開は、受入研究者の大槻の研究テーマの1つであり、大槻は主に組み合わせ的手法によりループ展開を研究していた。デルフィーヌさんの研究は、幾何的手法により同変不変量を定式化するものであり、先行研究との関連が期待され、その観点から、デルフィーヌさんと大槻は有意義な研究交流を行った。
デルフィーヌさんは、論文「Finite type invariants of null-homologous knots
in rational homology 3-spheres」の研究で、有理ホモロジー球面の中の null homologous な結び目の有限型不変量について研究しており、この不変量の性質を導いたりしている。上述の研究を発展させた研究である。
デルフィーヌさんは、論文「2-knots with factorized Alexander polynomial」の研究で、2次元結び目のAlexander多項式の値がとり得る形について研究している。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

結び目と3次元多様体の不変量について、順調に研究がすすんでいる。

Strategy for Future Research Activity

結び目と3次元多様体の不変量について、引き続いて、研究をすすめる。

  • Research Products

    (8 results)

All 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Journal Article] On the asymptotic expansion of the Kashaev invariant of the knots with 6 crossings2018

    • Author(s)
      T. Ohtsuki, Y. Yokota
    • Journal Title

      Math. Proc. Camb. Phil. Soc.

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed
  • [Journal Article] On the On the asymptotic expansion of the Kashaev invariant of the hyperbolic knots with seven crossings2017

    • Author(s)
      T. Ohtsuki
    • Journal Title

      Internat. J. Math.

      Volume: 28 Pages: -

    • DOI

      10.1142/S0129167X17500963

    • Peer Reviewed
  • [Journal Article] Equivariant triple intersections2017

    • Author(s)
      D. Moussard
    • Journal Title

      Annales de la Faculte des Sciences de Toulouse

      Volume: 26 Pages: 601-644

    • Peer Reviewed
  • [Presentation] Finite type invariants of knots in homology 3-spheres2018

    • Author(s)
      D. Moussard
    • Organizer
      Representation spaces, Teichmuller theory, and their relationship with 3-manifolds form the classical and quantum viewpoints
    • Int'l Joint Research
  • [Presentation] Splitting formulas for the rational lift of the Kontsevich integral2017

    • Author(s)
      D. Moussard
    • Organizer
      Intelligence of lowdimensional topology
    • Invited
  • [Presentation] A functorial extension of the rational lift of the Kontsevich integral2017

    • Author(s)
      D. Moussard
    • Organizer
      Tsuda University Topology Workshop
    • Invited
  • [Presentation] A-ribbon 2-knots and factorized Alexander polynomial2017

    • Author(s)
      D. Moussard
    • Organizer
      Topological invariants in low dimensional topology
    • Invited
  • [Presentation] A functorial extension of the rational lift of the Kontsevich integral2017

    • Author(s)
      D. Moussard
    • Organizer
      The 2nd Pan-Pacific International Conference on Topology and Applications
    • Int'l Joint Research

URL: 

Published: 2018-12-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi