• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Building Consumption Bigdata for High Resolution Analysis towards Evidence-based Policy

Research Project

  • PDF
Project/Area Number 16H02015
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Economic policy
Research InstitutionSophia University (2019-2021)
Kyoto University (2016-2018)

Principal Investigator

YANO Makoto  上智大学, 上智大学, 教授 (30191175)

Co-Investigator(Kenkyū-buntansha) 佐藤 正弘  東北大学, 国際文化研究科, 准教授 (60622214)
関根 仁博  京都大学, 経済研究所, 特定教授 (10811888)
鎗目 雅  東京大学, 大学院公共政策学連携研究部・教育部, 客員准教授 (30343106)
太田 塁  横浜市立大学, 国際商学部, 教授 (00338229)
本領 崇一  同志社大学, 経済学部, 准教授 (40835667)
Project Period (FY) 2016-04-01 – 2021-03-31
Keywordsビッグデータ / 機械学習 / 消費動向 / パンデミック / イノベーション / 社会科学 / 文理融合
Outline of Final Research Achievements

This project is to investigate the use of large-scale data, which has been made available by the IT revolution. By using consumption bigdata and newspaper bigdata, we have revealed that people who face COVID-19 pandemic or health-hazardous product defects take self-protective actions by learning from socially available information. We have characterized the recent information manipulations by the use of bigdata and characterized an ecosystem in which bigdata is utilized in a healthy manner by means of the blockchain technology. Facing the COVID-19 pandemic, moreover, we have built data on behavior change and added to the high-dimensional genome cohort date, in which the principal investigator has been involved.

Free Research Field

経済学

Academic Significance and Societal Importance of the Research Achievements

わが国は国際的な技術革新の波に乗り遅れ,深刻な長期停滞に悩む.本研究では,IT革命が生んだ大規模データに着目し,技術革新を社会科学的視点から分析した.社会的情報からの学習というビッグデータなしでは検証しにくい問題に取り組み,新型コロナウィルス感染症の拡大など,危機に直面した人々が社会的学習を通じて危険回避行動とることを解明した.また,情報の保全の意義,ブロックチェーン技術によるビッグデータ保全のメカニズム,技術の産業化に向けたエコシステムのデザインを示した.さらに,新型コロナに直面する人々の危険回避にむけた行動変容を示すデータ構築を行い,今後の分析の基礎を作った.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi