• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Conceptual demonstration of electron optical system with surface electrromagnetic waves driven by high-intensity laser

Research Project

  • PDF
Project/Area Number 16H02127
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Quantum beam science
Research InstitutionKyoto University

Principal Investigator

Sakabe Shuji  京都大学, 化学研究所, 教授 (50153903)

Research Collaborator HASHIDA Masaki  
INOUE Shunsuke  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords高強度短パルスレーザー / レーザー電子加速 / レーザー誘起電磁波 / レーザープラズマ相互作用 / 超高速電子線偏向法
Outline of Final Research Achievements

In this study, we experimentally verified that the functions of "generation / acceleration" and "induction" of electrons by the interaction of intense femtosecond laser with a solid (plasma) target can be separated and controlled. That is, it was experimentally observed that an electromagnetic wave induced by a huge current generated by high-intensity laser solid interaction is converted and transferred as a surface electromagnetic wave on a metal surface placed in the vicinity. This strong surface wave has potential applications of fast deflection electron-optics and terahertz wave sources.
Also, based on our developed technologies of the ultrafast electron diffraction instrument using laser accelerated electrons, we have successfully observed the ultrafast phenomena of laser ablation by the laser accelerated short electron pulses. As a derivative of these studies, we have succeeded in capturing the laser pulse being focused and propagating in vacuum for the first time in the world.

Free Research Field

レーザープラズマ科学

Academic Significance and Societal Importance of the Research Achievements

以上の成果は、高強度短パルスレーザーが光物質相互作用を誘起するだけではなく、その高速現象を観察するための量子線(電子や電磁波など)を複合的に発生し、それらを巧みに制御(短パルス化など)できれば、相互作用の高速観察を高強度短パルスレーザーだけで自己完結型で行えることの実証である。
本研究の成果は、高強度相対論的レーザープラズマ科学分野において新たな研究展開をもたらすだけでなく、様々な分野に関連した複雑系相互作用物理の解明に貢献できるものである。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi