2018 Fiscal Year Final Research Report
Control of Reaction Field for Advanced Non-aqueous Electrodeposition: Three Kinetic Approaches
Project/Area Number |
16H02411
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Metal making/Resorce production engineering
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
深見 一弘 京都大学, 工学研究科, 准教授 (60452322)
北田 敦 京都大学, 工学研究科, 助教 (30636254)
|
Research Collaborator |
INOGUCHI Shota
KATO Yukiya
KAWATA Kio
KINTSU Kohei
KOYAMA Akira
SAKURAI Akihiro
TAKEOKA Shun
MIZUNO Yuta
YASOSHIMA Juni
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 金属生産工学 / 金属電析 / 電気めっき / 金属錯体 / 溶液化学 / イオン液体 / 非水溶媒 / 多孔質電極 |
Outline of Final Research Achievements |
The chain length and the number of coordination of glymes as polydentate ligands turned out to be important control factors behind the electrodeposition behavior of aluminum using glymes as solvents. Nanoporous electrodes were found to suppress dendritic electrodeposition of zinc, which sometimes can be a problem when flat electrodes are employed; here, the net charge of dominant metal complex formed in aqueous electrolytes used was an important factor. As seen from these results, the present project investigated systematically the importance of (1) coordination symmetry and net charge of metal complex in the electrolytes and of (2) nanoporous texture of the electrode, in several electrodeposition processes using non-aqueous or aqueous electrolytes. Some derivative researches on (i) a design of novel solvate ionic liquids, (ii) electrodeposition of metals from highly condensed aqueous solutions, and (iii) a unique redox of lanthanide ion using porous electrodes were also conducted.
|
Free Research Field |
材料電気化学
|
Academic Significance and Societal Importance of the Research Achievements |
金属や合金の電析(electrodeposition)は、金属の製錬やリサイクリング、電気めっきや防食、電子基板や電子部品の配線形成、蓄電池の電極反応など、われわれの身の回りのものづくり技術やデバイスの動作を支える、社会的に重要な要素技術である。本研究の学術的意義は、このところ広く研究されるようになった非水溶媒(イオン液体や有機溶媒など)を使った電析を主眼に、電析の反応速度をつかさどる (1)金属錯体の対称性と (2)正味電荷、あるいは (3)多孔質電極におけるナノ空間での溶液状態を多角的かつ系統的に調べ、水溶液を使う従来型のプロセスに比べて乏しい、電析反応に関する基礎的知見を得ることである。
|