• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Machine learning and distributed game-tree search in games

Research Project

  • PDF
Project/Area Number 16H02927
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Entertainment and game informatics 1
Research InstitutionThe University of Tokyo

Principal Investigator

KANEKO TOMOYUKI  東京大学, 大学院情報学環・学際情報学府, 准教授 (00345068)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywordsゲームプログラミング
Outline of Final Research Achievements

After the success of AlphaGo, many researchers are focusing on games to develop technologies in artificial intelligence. In this research project, we have developed new techniques in machine learning (reinforcement learning) and game tree search to improve the performance of AI agents on games. Our research involves parallel and/or distributed computing to speed-up learning, because the learning requires tremendous amount of computing resources in the existing techniques in reinforcement learning.

Free Research Field

ゲーム情報学

Academic Significance and Societal Importance of the Research Achievements

研究計画の通りに機械学習とゲーム木探索とその並列実行について研究した.また採択後に大きく発展したAlphaGoに代表するGPU計算と強化学習についても,最新技術を研究に反映させた.成果の一つであるUniformity regularizationという学習方式については,tensorflow及びchainer上で実装し,囲碁,将棋,チェスなど代表的なゲームを題材に性能を示した.成果全体を総合して15件の論文を公表した.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi