2018 Fiscal Year Final Research Report
Design of state-of-the-art GREEN energy device using trace amount of Pt element and nano-structural control approach
Project/Area Number |
16H02981
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Environmental engineering and reduction of environmental burden
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
Mori Toshiyuki 国立研究開発法人物質・材料研究機構, エネルギー・環境材料研究拠点, 上席研究員 (80343854)
|
Co-Investigator(Kenkyū-buntansha) |
CHAUHAN Shipra 国立研究開発法人物質・材料研究機構, ナノ材料科学環境拠点(GREEN), NIMSポスドク研究員 (50747417)
|
Research Collaborator |
TANJI Takayoshi
YAMAMOTO Yuta
YAMAMOTO Shunya
Andrii Rednyk
ISAKA Noriko
ITO Shigeharu
YE Fei
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | マイクロアナリシス / シミュレーション / 合成 / 融合 / アノード内3相界面 / 超構造 / 活性サイト / 中温域SOFC |
Outline of Final Research Achievements |
To design the high quality active sites in the anode of intermediate temperature SOFC (IT-SOFC) device, the functional interfaces were designed on Ni surface and YSZ surface using trace amount of PtOx and small amount of FeOx and MnOx. TEM microanalysis suggested that super-structure consists of Pt2+, and lattice defects was formed on the partial oxidized Ni surface around three-phase boundary in the anode. Also, we performed surface atomistic simulation (Code: GULP, Empirical potential: Buckingham potential) to conclude the TEM microanalysis well. On the basis of results of microanalysis and surface simulation, we concluded the formation of similar active sites on YSZ using DFT+U simulation (Code: ABINIT, Pseudopotential: PAW method) for design of high quality three-phase boundary in the anode of IT-SOFC. The combination of microanalysis, modeling and fabrication provided us superior quality active sites in anode of IT-SOFC with high performance using small amount FeOx or MnOx.
|
Free Research Field |
環境保全、環境低負荷技術
|
Academic Significance and Societal Importance of the Research Achievements |
従来の研究では、中温域SOFCの性能向上のため、カソード/固体電解質界面の高性能化が主流となり、これに伴い高性能化するべきアノード内3相界面の活性化ができない状態にあった。本研究では、マイクロアナリシス(観る)、シミュレーション(考える)及び合成(創る)を融合する手法を用いることで、世界に先駆けて、カソード側の高性能化に伴い、アノード側のNi表面のレドックス耐性が低下する問題点を克服するという学術的に先駆的な研究を推進し、カソード側2相界面の酸素還元反応及びアノード側3相界面の水素酸化反応双方の電極反応速度のバランスをとり、真に社会実装に役立つ界面設計手法の高度化を達成した。
|