• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Systemization of reconstruction method for secure and open people flow depending on types of CDRs data

Research Project

  • PDF
Project/Area Number 16H03119
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Social systems engineering/Safety system
Research InstitutionThe University of Tokyo

Principal Investigator

Sekimoto Yoshihide  東京大学, 生産技術研究所, 准教授 (60356087)

Co-Investigator(Kenkyū-buntansha) 金杉 洋  東京大学, 空間情報科学研究センター, 特任研究員 (00526907)
瀬戸 寿一  東京大学, 空間情報科学研究センター, 特任講師 (80454502)
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords人流データ / パーソントリップデータ / オープンデータ
Outline of Final Research Achievements

Understanding people flow at a citywide level is critical for urban planning and commercial development. However, high cost and severe privacy policy constraints still complicate utilization of these data in practice. There is no dataset that
anyone can freely access, use, modify, and share for any purpose. To tackle this problem, we propose a novel dataset creation approach (called Open PFLOW) that continuously reports the spatiotemporal positions of all individual’s in urban areas based on open data. With fully consideration of the privacy protection, each entity in our dataset does not match the actual movement of any real person, so that the dataset can be totally open to public as part of data infrastructure. We evaluate the accuracy of the dataset by comparing it with commercial datasets and traffic census indicates that it has a high correlation with mesh population and link-based traffic volume.

Free Research Field

空間情報

Academic Significance and Societal Importance of the Research Achievements

近年、携帯電話等を活用した人々の流動に関する高精度なデータがあるものの、これらは高価なものであり、広く使うのは一般的に難しかった。しかし、Open PFLOWデータセットにより、無償で色々な人が使えることによって、広く人の流動データを使ってもらうことが可能である。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi