• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

A Study on Motor Learning through Voluntary but Passive Motor Experience

Research Project

  • PDF
Project/Area Number 16H03219
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Developmental mechanisms and the body works
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Kondo Toshiyuki  東京農工大学, 工学(系)研究科(研究院), 教授 (60323820)

Project Period (FY) 2016-04-01 – 2020-03-31
Keywordsロボット
Outline of Final Research Achievements

We can adapt to unfamiliar environments through active motor experience. Recent neurorehabilitation study using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge on passive motor learning is limited.
To clarify the effects of passive motor experience on human motor learning, we performed a visuomotor learning experiments guided by a robotic manipulandum. In the study, we further investigate whether the active motor command generation with/without error presentation during passive motor experience can affect the formation of internal model for future active motor execution.
The experimental result suggests that recognizing prediction error is effective for constructing internal model even in passive motor experience. Analyzing the change of body representation between before and after the passive motor experience is future work.

Free Research Field

知能情報学

Academic Significance and Societal Importance of the Research Achievements

本研究の実験の結果から,ロボットによって受動的に運動を経験する際の運動司令の随意的な生成と,運動方向に関する予測誤差をフィードバックすることが,運動学習を促進することが明らかになった.この結果は,受動的な運動経験であっても,それが「自分の身体を動かしているのは自分自身であるという感覚」である運動主体感を持たせ,かつ予測誤差を視覚提示することで,運動学習が可能であることを示唆している.ロボットを利用したリハビリテーションを効果的にするための条件について学術的に明らかにするものであり,かつ脳卒中患者が増加している現代社会では社会的意義も大きいと考えられる.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi