• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Birational geometry for higher-dimensional algebraic varieties

Research Project

  • PDF
Project/Area Number 16H03925
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

Fujino Osamu  大阪大学, 理学研究科, 教授 (60324711)

Project Period (FY) 2016-04-01 – 2021-03-31
Keywords極小モデル理論 / 混合ホッジ構造 / トーリック多様体 / 双有理幾何学 / 小平消滅定理
Outline of Final Research Achievements

I am mainly interested in higher-dimensional complex projective varieties. I have already established some powerful generalizations of the Kodaira vanishing theorem by using the theory of mixed Hodge structures on cohomology with compact support. I have also studied the theory of variations of mixed Hodge structure on cohomology with compact support. Now I am interested in applications of the theory of variations of mixed Hodge structure for higher-dimensional algebraic varieties. I obtained a generalization of Kodaira's canonical bundle formula and now tries to apply this new result for some geometric problems. In 2020, I published a book on the Iitaka conjecture.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

この5年間の主な研究成果は、混合ホッジ構造の変動の理論を高次元代数多様体の研究に組織的に持ち込んだことである。すでにコンパクト台コホモロジーに入る混合ホッジ構造が高次元代数多様体論で有益であることは知っていたが、混合ホッジ構造の変動も考えることで様々な応用が考えられることに気づいた。安定多様体のモジュライ空間の射影性の証明は一番最初の素朴な応用である。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi