• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Studies on Mock Modular Forms and Quantum Invariants

Research Project

  • PDF
Project/Area Number 16H03927
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyushu University

Principal Investigator

Hikami Kazuhiro  九州大学, 数理学研究院, 准教授 (60262151)

Co-Investigator(Kenkyū-buntansha) 村上 斉  東北大学, 情報科学研究科, 教授 (70192771)
藤 博之  大阪工業大学, 情報科学部, 教授 (50391719)
山崎 玲 (井上玲)  千葉大学, 大学院理学研究院, 教授 (30431901)
Project Period (FY) 2016-04-01 – 2021-03-31
Keywords数理物理 / 量子トポロジー / モジュラー形式
Outline of Final Research Achievements

A mock modular form is defined as a holomorphic part of the harmonic Maass forms. A typical example is the Ramanujan mock theta function, which has a weight 1/2 mock modular form. It is originally related to the integer partition. Recently it is recognized that mock modular form plays an important role in quantum topology. In the present research, we studied quantum modular form by use of the cluster algebra and the double affine Hecke algebra, and clarified new aspects of quantum invariants.

Free Research Field

数理物理

Academic Significance and Societal Importance of the Research Achievements

量子トポロジーの研究は,量子計算,特にトポロジカル量子計算の応用研究につながる.結び目や3次元多様体の量子不変量の性質,特にモジュラー形式との関係はじめ数論的性質を明らかにしようとする研究課題は比較的新しいものであり,今後の応用・発展につながることが期待できる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi